Listening for the Echoes of Inflation with BICEP2 and Beyond

Jeffrey P. Filippini California Institute of Technology for the BICEP2 collaboration

Outline

• The Echoes of Inflation

- The BICEP2 Instrument
- Results and Interpretation
- The Future

A History of Creation

Universe becomes transparent

Inflation

Primordial Perturbations

History of the Universe

CMB Polarization

J. Filippini - Rencontres de Blois 2014

Cold

Varm

Patterns of Polarization

Density Wave

Patterns of Polarization

The Lay of the Land

The Challenge

Extremely faint signal demands a map that is...

• Precise

Detectors approach <u>photon noise limit</u> <u>Many</u> detectors (*multiplexing*)

Accurate Rigid control of polarized <u>systematics</u>

- Uncontaminated Avoidance (or subtraction) of polarized foregrounds
- Not necessarily high angular resolution!

 μK_{CMB}

Inflation Investigators

A Targeted Strategy

- Minimum aperture (~26 cm) to resolve degree scales
- Systematic control
 - Cold (4.2K), on-axis optics
 - Bore sight rotation
- Foreground avoidance
 - Clean sky: ~400 sq. deg.
 - 150 GHz: low atmospheric and foreground emission
- Deep mapping
 - 3 years: 87 nK-deg!

A Targeted Strategy

- Minimum aperture (~26 cm) to resolve degree scales
- Systematic control
 - Cold (4.2K), on-axis optics
 - Bore sight rotation
- Foreground avoidance
 - Clean sky: ~400 sq. deg.
 - 150 GHz: low atmospheric and foreground emission
- Deep mapping
 - 3 years: 87 nK-deg!

A Targeted Strategy

- Minimum aperture (~26 cm) to resolve degree scales
- Systematic control
 - Cold (4.2K), on-axis optics
 - Bore sight rotation
- Foreground avoidance
 - Clean sky: ~400 sq. deg.
 - 150 GHz: low atmospheric and foreground emission
- Deep mapping
 - 3 years: 87 nK-deg!

Caltech/|PL Detectors

The View from the Bottom of the World

BICEP2 T and Stokes Q/U Maps

Total Polarization

BICEP2 total polarization signal

B-mode Signal

BICEP2 B-mode signal

B-mode Signal

BICEP2 B-mode signal

BICEP2 B-mode Power Spectrum

What could this be?

- Instrumental systematics?
- Galactic foregrounds?
- Cosmology?

Systematic Errors

Simulate effect of **measured** beam and instrument imperfections.

We find with high confidence that the apparent signal *cannot be explained* by instrumental systematics

Jackknife tests

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 and χ (sum-of-deviation) Tests				
Incklopifa	Bandnaware	Bandnaware	Dandnawara	Bandnamara
Jackknife	$1-5 \chi^2$	$1-9 \chi^2$	$1-5 \chi$	$1-9 \chi$
Deck jackk	nife			
EE	0.046	0.030	0.164	0.299
BB	0.774	0.329	0.240	0.082
EB	0.337	0.643	0.204	0.267
Scan Dir ja	ckknife			
EE	0.483	0.762	0.978	0.938
BB	0.531	0.573	0.896	0.551
EB	0.898	0.806	0.725	0.890
Tag Split ja	ickknife			
EE	0.541	0.377	0.916	0.938
BB	0.902	0.992	0.449	0.585
EB	0.477	0.689	0.856	0.615
Tile jackkn	ife			
FE	0.004	0.010	0.000	0.002
BB	0.794	0.752	0.565	0.331
EB	0.172	0.419	0.962	0.790
Phase jackl	knife			
FE	0.673	0.409	0.126	0 339
BB	0.591	0.739	0.842	0.944
EB	0.529	0.577	0.840	0.659
Mux Col is	ckknife			
EE	0.812	0.597	0.106	0.204
RR	0.812	0.587	0.196	0.204
EB	0.866	0.968	0.876	0.697
Alt Deck is	wekknife.			
FE FE	0.004	0.004	0.070	0.226
PR	0.004	0.004	0.070	0.236
EB	0.150	0.060	0.170	0.291
Mur Dow	nakknifa			
Mux Kow j	ackkiiic	0.170	0.682	0.720
PD	0.052	0.178	0.033	0.739
EB	0.529	0.226	0.024	0.048
T1 (D 1)				
me/Deck j	ackknife	0.000		
EE	0.048	0.088	0.144	0.132
EB	0.908	0.154	0.629	0.209
E I DI		11-16		
Focal Plane	e inner/outer jac	ekknife		
EE	0.230	0.597	0.022	0.090
EB	0.216	0.551	0.046	0.092
		0.012	0.020	0.000
Tile top/bo	ttom jackknife		0.450	
EE	0.289	0.347	0.459	0.599
EB	0.295	0.230	0.154	0.028
	0.040	0.000	0.702	0.002
Tile inner/o	outer jackknife			
EE	0.727	0.533	0.128	0.485
EB	0.255	0.086	0.421	0.036
	5.405	0.101	0.200	0.100
Moon jack	knife			
EE	0.499	0.689	0.481	0.679
BB	0.144	0.287	0.898	0.858
ED	0.289	0.559	0.551	0.307
A/B offset	best/worst			
EE	0.317	0.311	0.868	0.709
BB	0.114	0.064	0.307	0.094

Splits by boresight rotation

Amplifies differential pointing in comparison to fully added data. Check of deprojection.

Splits by time

Checks for contamination on long ("Tag Split") and short ("Scan Dir") timescales. Short timescales probe detector transfer functions.

Splits by channel selection

Checks for contamination in channel subgroups, divided by focal plane location, tile location, and readout electronics grouping

Splits by possible external contamination

Checks for contamination from ground-fixed signals, such as polarized sky or magnetic fields, or the moon

Splits to check intrinsic detector properties

Checks for contamination from detectors with best/ worst differential pointing. "Tile/dk" divides the data by the orientation of the detector on the sky. J. Filippini - Rencontres de Blois 2014

Cross Correlations

BICEP1: Feedhorns,NTDs, 150 and 100 GHz

BICEP2: Phased antenna array, TESs, 150 GHz

Keck Array: Phased antenna array, TESs, 150 GHz

- 3.5σ detection of BB in cross with color-combined BICEP1 (r_{max}=0.19)
- Excess power also evident in cross with 2 years of Keck Array data (150 GHz, preliminary)!

What could this be?

- Instrumental systematics?
- Galactic foregrounds?
- Cosmology?

Polarized Foregrounds

Any polarized astrophysical emission between last scattering and us!

- Synchrotron "Red":~ v^{-3}
- **Dust** "Blue": ~ $v^{+1.75}$

WMAP <u>unpolarized</u>

Planck 2014 magnetic field

J. Filippini - Rencontres de Blois 2014

• Point sources

Polarized Foregrounds

Any polarized astrophysical emission between last scattering and us!

- **Synchrotron** "Red":~ ν⁻³ No correlation with WMAP-K
- **Dust** "Blue": ~ $v^{+1.75}$

Brighter than existing models Lack of cross-correlation Angular spectrum consistent with GW signal

Point sources

No cross-correlation with source catalogs (Planck, ATCA)

Spectral Index Constraint

- Constrain BB signal color with B2₁₅₀xB1₁₀₀
 - If dust, expect little correlation
 - If **synchrotron**, expect bright correlation

• Consistent with CMB, disfavor benchmark dust and sync models at 2.2/2.3σ

Antenna temperature frequency power law

What could this be?

- Instrumental systematics?
- Galactic foregrounds?
- Cosmology

Constraint on Tensor/Scalar Ratio

- Best-fit **r=0.20** (PTE of fit 0.9) Consistent with large-field, GUT-scale inflation
- r=0 disfavored at **7.0σ** (PTE 3.3 x 10⁻¹²)
- Sample variance dominated -> Need more sky!

Effect of Foregrounds

- Foregrounds could contribute small amount of observed BB
- Total power spectrum does not look like foreground expectations
- Subtracting DDM2 cross gives $r_{sub} = 0.16^{+0.06}_{-0.05}$
- ... still disfavors r=0 at 5.9σ
- Dust contributes most in the first band power. Deweighting this bin would give less deviation from our base result

What next?

KECK ARRAY

- South Pole, 2011 2016
- 2011: **1536** TESs @150 GHz
- 2012-13: **2560** @150 GHz
- 2014 upgrade:
 1536 @ 150 GHz
 576 @ 100 GHz

BICEP3

- South Pole, 2015-16
- 2560 TESs @ 100 GHz

SPIDER

- Long-duration balloon 2014
- Large (~10%) sky coverage
- Half-wave plate
- 2400 TESs
 - 1536 @ 150 GHz
 - 864 @ 100 GHz

A Rich Field

SPIDER

Keck Array

BICEP3

Planck

J. Filippini - Rencontres de Blois 2014

ACTpol

Conclusions

- BICEP2 observes 5.3σ excess
 above lensed-ΛCDM; r=0 disfavored
 at 7σ (no foreground subtraction)
 - Extensive studies disfavor systematic error as origin
 - Foregrounds do not appear to constitute the bulk of the signal
- Consistent with expectations for primordial gravitational waves from GUT-scale inflation
- The era of B-mode cosmology has begun!