Theoretical Aspects of Flavour in the Leptonic Sector

Mu-Chun Chen, University of California at Irvine

Where Do We Stand?

- Exciting Time in v Physics: recent hints/evidences of large θ_{13} from T2K, MINOS, Double Chooz, Daya Bay and RENO
- Latest 3 neutrino global analysis (including recent results from reactor experiments and T2K):

Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2013, updated March 2014)

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^{2} / 10^{-5} \mathrm{eV}^{2}(\mathrm{NH}$ or IH$)$	7.54	$7.32-7.80$	$7.15-8.00$	$6.99-8.18$
$\sin ^{2} \theta_{12} / 10^{-1}(\mathrm{NH}$ or IH$)$	3.08	2.91-3.25	$2.75-3.42$	2.59-3.59
$\Delta m^{2} / 10^{-3} \mathrm{eV}^{2}$ (NH)	2.43	$2.37-2.49$	$2.30-2.55$	$2.23-2.61$
$\Delta m^{2} / 10^{-3} \mathrm{eV}^{2}$ (IH)	2.38	$2.32-2.44$	$2.25-2.50$	$2.19-2.56$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NH})$	2.34	$2.15-2.54$	$1.95-2.74$	1.76-2.95
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{IH})$	2.40	$2.18-2.59$	$1.98-2.79$	1.78-2.98
$\sin ^{2} \theta_{23} / 10^{-1}$ (NH)	4.37	$4.14-4.70$	$3.93-5.52$	$3.74-6.26$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IH})$	4.55	4.24-5.94	$4.00-6.20$	3.80-6.41
δ / π (NH)	1.39	$1.12-1.77$	$0.00-0.16 \oplus 0.86-2.00$	-
δ / π (IH)	1.31	0.98-1.60	$0.00-0.02 \oplus 0.70-2.00$	-

- Evidence of $\theta_{13} \neq 0$
- no clear preference for hierarchy
- hints of $\theta_{23} \neq \pi / 4$
- expectation of Dirac CP phase $\delta \quad=$ Majorana vs Dirac

Theoretical Challenges

(i) Absolute mass scale: Why $m_{v} \ll m_{u, d, e}$?

- seesaw mechanism: most appealing scenario \Rightarrow Majorana
- UV completions of Weinberg operators HHLL
- Type-I seesaw: exchange of singlet fermions

Minkowski, 1977; Yanagida, 1979; Glashow, 1979;
Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979;

$$
N_{R}: S U(3)_{C} \times S U(2)_{W} \times U(1)_{Y}
$$

$$
\sim(1,1,0)
$$

- Type-II seesaw: exchange of weak triplet scalar

Lazarides, 1980; Mohapatra, Senjanovic, 1980
$\Delta: S U(3)_{c} \times S U(2)_{w} \times U(1)_{r}$ $\sim(1,3,2)$

- Type-III seesaw: exchange of weak triplet fermion

Foot, Lew, He, Joshi, 1989; Ma, 1998

$$
\Sigma_{R}: S U(3)_{C} \times S U(2)_{W} \times U(1)_{Y}
$$

$$
\sim(1,3,0)
$$

Theoretical Challenges

(i) Absolute mass scale: Why $m_{v} \ll m_{u, d, e}$?

- seesaw mechanism: most appealing scenario \Rightarrow Majorana
- GUT scale (type-I) vs TeV scale (type-II, III, inverse seesaw)
- TeV scale new physics (SUSY, extra dimension, U(1)) \Rightarrow Dirac or Majorana
(ii) Flavor Structure: Why neutrino mixing large while quark mixing small?
- neutrino anarchy: no parametrically small number Hall, Murayama, Weiner (2000);
- near degenerate spectrum, large mixing de Gouvea, Murayama (2003)
- predictions strongly depend on choice of statistical measure
- still alive and kicking de Gouvea, Murayama (2012)
- family symmetry: there's a structure, expansion parameter (symnetry effect)
- mixing result from dynamics of underlying symmetry
- for leptons only (normal or inverted)
- for quarks and leptons: quark-lepton connection \leftrightarrow GUT (normal)
- Alternative?
- In this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly
- These scenarios have drastically different predictions
- precision measurements allow for distinguishing models

Origin of Mass Hierarchy and Mixing

- In the SM: 22 physical quantities which seem unrelated
- Question arises whether these quantities can be related
- No fundamental reason can be found in the framework of SM

- less ambitious aim \Rightarrow reduce the \# of parameters by imposing symmetries
- SUSY Grand Unified Gauge Symmetry
- GUT relates quarks and leptons: quarks \& leptons in same GUT multiplets
- one set of Yukawa coupling for a given GUT multiplet \Rightarrow intra-family relations
- seesaw mechanism naturally implemented
- proton decay, leptogenesis, LFV charged lepton decay
- Family Symmetry
- relate Yukawa couplings of different families
- inter-family relations \Rightarrow further reduce the number of parameters
\Rightarrow Experimentally testable correlations among physical observables

Origin of Flavor Mixing and Mass Hierarchy

- Several models have been constructed based on
- GUT Symmetry [SU(5), SO(10)] \oplus Family Symmetry GF
- Family Symmetries GF based on continuous groups:
- U(1)
- SU(2)
- SU(3)

GUT Symmetry SU(5), SO(I0), ...

- Recently, models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T^{\prime} (double tetrahedron)
- S_{3} (equilateral triangle)
- S_{4} (octahedron, cube)
- A5 (icosahedron, dodecahedron)

Motivation: Tri-bimaximal
(TBM) neutrino mixing

- Δ_{27}
- Q4

Tri-bimaximal Neutrino Mixing

- Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$
\begin{gathered}
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \\
\sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \quad \sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3 \quad \sin \theta_{13, \mathrm{TBM}}=0 .
\end{gathered}
$$

- General approach:
- PMNS = LO prediction (TBM, BM, ...) + corrections
- corrections:
\{ higher order terms in super potential (family symmetry) contributions from charged lepton sector (GUT symmetry)

Non-Abelian Finite Family Symmetry A4

-TBM mixing matrix: can be realized with finite group family symmetry based on $\mathrm{A}_{4} \quad \mathrm{Ma}_{3}$, Raisesearana (2001); Babu, Ma, Valle (2003)....

- A_{4} : even permutations of 4 objects

$$
\begin{aligned}
& \text { S: }(1234) \rightarrow(432 I) \\
& \text { T: }(1234) \rightarrow(2314)
\end{aligned}
$$

- Group of order 12
- Invariant group of tetrahedron

Invariant Group of Tetrahedron

$$
\text { S: }(1234) \rightarrow(4321)
$$

Non-Abelian Finite Family Symmetry A4

-TBM mixing matrix: can be realized with finite group family symmetry based on $A_{4} \quad$ Ma, Rajisekerana (2001); Babu, Ma, Valle (2003):

- A_{4} : even permutations of 4 objects

$$
\begin{aligned}
& \text { S: (I234) } \rightarrow(432 I) \\
& \text { T: }(1234) \rightarrow(2314)
\end{aligned}
$$

- Group of order 12

- Invariant group of tetrahedron
-TBM arises due to the misalignment of symmetry breaking patterns
- Problem: A_{4} does not seem to give rise to quark mixing

Example: T' Family Symmetry

- $\mathrm{SU}(5)$ compatibility \Rightarrow Double Tetrahedral Group T^{\prime}
- Symmetries $\Rightarrow 9$ parameters in Yukawa sector $\Rightarrow 22$ physical observables
- neutrino mixing angles from group theory (CG coefficients)
- TBM: misalignment of symmetry breaking patterns
- neutrino sector: $T^{\prime} \rightarrow \mathrm{G}_{\mathrm{TST}}$, charged lepton sector: $\mathrm{T}^{\prime} \rightarrow \mathrm{G}_{\mathrm{T}}$
- GUT symmetry \Rightarrow contributions to mixing parameters from charged lepton sector
\Rightarrow deviation from TBM related to Cabibbo angle θ_{c}, consequence of Georgi-Jarlskog relations

$$
\begin{aligned}
& \theta_{13} \simeq \theta_{c} / 3 \sqrt{2} \longleftarrow \begin{array}{c}
\mathrm{CG} \text { o of } \\
\mathrm{sU}(5) \& \mathrm{~T}^{\prime}
\end{array} \\
& \tan ^{2} \theta_{\odot} \simeq \tan ^{2} \theta_{\odot, T B M}+\frac{1}{2} \theta_{c} \cos \delta
\end{aligned}
$$

prediction in 2009 for Dirac CP phase:
$\delta=227$ degrees
quark CP phase: $\gamma=45.6$ degrees

- large θ_{13} possible with one additional singlet flavon
M.-C. C., J. Huang, K.T. Mahanthappa,A.Wijiangco (2013)

"Large" Deviations from TBM in A_{4}

M.-C.C, J. Huang, J. O'Bryan, A.Wijangco, F. Yu, (20I2)

- other A4 breaking patterns:

deviations correlated

non-maximal $\theta_{23} \leftrightharpoons$ normal hierarchy

Flavor Model Structure: A4 Example

- interplay between the symmetry breaking patterns in two sectors lead to lepton mixing (BM, TBM, ...)
- symmetry breaking achieved through flavon VEVs
- each sector preserves different residual symmetry
- full Lagrangian does not have these residual symmetries
- general approach: include high order terms in holomorphic superpotential
- possible to construct models where higher order holomorphic superpotential terms vanish to ALL orders
- quantum correction?
\Rightarrow uncertainty in predictions due to
Kähler corrections
Leurer, Nir, Seiberg (1993); Dudas, Pokorski, Savoy (1995); Dreiner, Thomeier (2003);

Kähler Corrections

- Superpotential: holomorphic

$$
\begin{gathered}
\mathscr{W}_{\text {leading }}=\frac{1}{\Lambda}\left(\Phi_{e}\right)_{g f} L^{g} R^{f} H_{d}+\frac{1}{\Lambda \Lambda_{\nu}}\left(\Phi_{\nu}\right)_{g f} L^{g} H_{u} L^{f} H_{u} \\
\longrightarrow \mathscr{W}_{\text {eff }}=\left(Y_{e}\right)_{g f} L^{g} R^{f} H_{d}+\frac{1}{4} \kappa_{g f} L^{g} H_{u} L^{f} H_{u} \quad \begin{array}{l}
\text { order parameter } \\
\langle\text { flavon vev> / } \Lambda \sim \theta c
\end{array}
\end{gathered}
$$

- Kähler potential: non-holomorphic

$$
K=K_{\text {canonical }}+\Delta K
$$

- Canonical Kähler potential

$$
K_{\text {canonical }} \supset\left(L^{f}\right)^{\dagger} \delta_{f g} L^{g}+\left(R^{f}\right)^{\dagger} \delta_{f g} R^{g}
$$

- Correction

$$
\begin{aligned}
\Delta K=\left(L^{f}\right)^{\dagger}\left(\Delta K_{L}\right)_{f g} L^{g}+\left(R^{f}\right)^{\dagger}\left(\Delta K_{R}\right)_{f g} R^{g} & \text { - important for order parameter } \sim \theta c \\
& \text { - can lead to non-trivial mixing }
\end{aligned}
$$

- can be induced by flavon VEVs

Kähler Corrections

- Consider infinitesimal change, x :

$$
K=K_{\text {canonical }}+\Delta K=L^{\dagger}(1-2 x P) L
$$

- rotate to canonically normalized L':

$$
L \rightarrow L^{\prime}=(1-x P) L
$$

\Rightarrow corrections to neutrino mass matrix

$$
m_{\nu}(x) \simeq m_{\nu}+x P^{T} m_{\nu}+x m_{\nu} P
$$

\Rightarrow differential equation

$$
\frac{\mathrm{d} m_{\nu}}{\mathrm{d} x}=P^{T} m_{\nu}+m_{\nu} P
$$

- same structure as the RG evolutions for neutrino mass operator
- size of Kähler corrections can be substantially larger (no loop suppression)

A4 Example

- Kähler corrections due to flavon field:
- quadratic in flavon

$$
\Delta K_{\phi^{(\prime)}}^{\text {quadratic }} \supset \frac{1}{\Lambda^{2}} \sum_{\boldsymbol{X}}^{6} \kappa_{\phi^{(\prime)}, \text { quadratic }\left(L \phi^{(\prime)}\right)_{\boldsymbol{X}}^{\dagger}}^{\left(L \Phi_{\nu}\right)^{\dagger} \underbrace{\left(L \phi^{(\prime)}\right)_{\boldsymbol{X}}}_{\left(L \Phi_{\nu}\right) \quad \text { and } \quad\left(L \Phi_{e}\right)^{\dagger}\left(L \Phi_{e}\right)}+\text { h.c. }}
$$

- such terms cannot be forbidden by any (conventional) symmetry
- Kähler corrections once flavon fields attain VEVs
- additional parameters $\kappa_{\phi^{(r)}}^{X}$ reduce predictivity of the scheme

Back to A_{4} Example

- Contributions from Flavon VEVs $(1,0,0)$ and ($1,1,1$)
- five independent "basis" matrices

$$
\begin{gathered}
P_{\mathrm{I}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{\mathrm{II}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{\mathrm{III}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
P_{\mathrm{IV}}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \quad P_{\mathrm{V}}=\left(\begin{array}{ccc}
0 & \mathrm{i} & -\mathrm{i} \\
-\mathrm{i} & 0 & \mathrm{i} \\
\mathrm{i} & -\mathrm{i} & 0
\end{array}\right)
\end{gathered}
$$

- RG correction: essentially along $P_{I I I}=\operatorname{diag}(0,0,1)$ direction due to y_{τ} dominance
- Kähler corrections can be along different directions than RG

Enhanced θ_{13}

- consider change due to correction along Pv direction
- Kähler metric:

$$
\mathcal{K}_{L}=1-2 x P \quad \text { with } \quad P_{\mathrm{V}}=\left(\begin{array}{ccc}
0 & \mathrm{i} & -\mathrm{i} \\
-\mathrm{i} & 0 & \mathrm{i} \\
\mathrm{i} & -\mathrm{i} & 0
\end{array}\right)
$$

- Contributions of flavon VEV: $\langle\Phi\rangle=(1,1,1) v$
- Corrections to the leading order TBM prediction ($m_{e} \ll m_{\mu} \ll m_{\tau}$)

$$
\Delta \theta_{13} \simeq \kappa_{\mathrm{V}} \cdot \frac{v^{2}}{\Lambda^{2}} \cdot 3 \sqrt{6} \frac{m_{1}}{m_{1}+m_{3}}
$$

- Complex matrix $\mathrm{Pv}_{\mathrm{v}} \Rightarrow \mathrm{CP}$ violation induced
- for the example considered: $\quad \delta \approx \pi / 2$

An Example: Enhanced θ_{13}

M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

Corresponding Change in θ_{12}

M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

Corresponding Change in θ_{23}

M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

A Novel Origin of CP Violation

- Conventionally:

- spontaneous CP violation: complex Higgs VEVs
- Complex CG coefficients in discrete groups \Rightarrow explicit CP violation in quark and lepton
sectors (e.g. $\delta \neq 0$)
M.-C.C, K.T. Mahanthappa, Phys. Lett. B68I, 444 (2009);
M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz,A.Trautner, Nucl. Phys. B (2014)
- Conditions for a discrete group to admit real CG's

Bickerstaff, Damhus, 1985
\exists automorphism u, such that $\lambda_{k}(\mathrm{R})=\lambda_{\mathrm{k}}(u(\mathrm{R}))^{*}$ for all $\mathrm{R} \in \mathrm{G}$

A Novel Origin of CP Violation

- more generally, for discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow physical CP violation

CP Violation from Group Theory!

Example for a type I group:

$\Delta(27)$

- decay asymmetry in a toy model

- prediction of CP violating phase from group theory

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Field content

$$
q_{\Psi}-q_{\Sigma} \neq 0
$$

- Interactions

$$
\begin{aligned}
& \mathscr{L}_{\text {toy }}=f\left[S_{\mathbf{1}_{0}} \otimes(\bar{\Psi} \Sigma)_{\mathbf{1}_{0}}\right]_{\mathbf{1}_{0}}+g\left[X_{\mathbf{1}_{1}} \otimes(\bar{\Psi} \Sigma)_{\mathbf{1}_{2}}\right]_{\mathbf{1}_{0}} \\
& +h_{\Psi}\left[Y_{\mathbf{1}_{3}} \otimes(\bar{\Psi} \Psi)_{\mathbf{1}_{6}}\right]_{\mathbf{1}_{0}}+h_{\Sigma}\left[Y_{\mathbf{1}_{3}} \otimes(\bar{\Sigma} \Sigma)_{\mathbf{1}_{6}}\right]_{\mathbf{1}_{0}}+\text { h.c. } \\
& =F^{i j} S \bar{\Psi}_{i} \Sigma_{j}+G^{i j} X \bar{\Psi}_{i} \Sigma_{j}+H_{\Psi}^{i j} Y \bar{\Psi}_{i} \Psi_{j}+H_{\Sigma}^{i j} Y \bar{\Sigma}_{i} \Sigma_{j}+\text { h.c. } \\
& \left(\widehat{F=f \mathbb{1}_{3}}\right)
\end{aligned}
$$

Toy Model based on $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Particle decay $Y \rightarrow \bar{\Psi} \Psi$
interference of

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi}=|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right]
$$

- cancellation requires delicate adjustment of relative phase $\varphi:=\arg \left(h_{\Psi} h_{\Sigma}^{*}\right)$
- for non-degenerate M_{S} and M_{X}. $\quad \operatorname{Im}\left[I_{S}\right] \neq \operatorname{Im}\left[I_{X}\right]$
- phase φ unstable under quantum corrections
- for $\operatorname{Im}\left[I_{S}\right]=\operatorname{Im}\left[I_{X}\right] \&|f|=|g|$
- phase φ stable under quantum corrections
- relations cannot be ensured by outer automorphism of $\Delta(27)$
- require symmetry larger than $\Delta(27)$

Spontaneous CP Violation with Calculable CP Phase

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

field	X	Y	Z	Ψ	Σ	ϕ
$\Delta(27)$	$\mathbf{1}_{1}$	$\mathbf{1}_{3}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}_{0}$
$\mathrm{U}(1)$	$2 q_{\Psi}$	0	$2 q_{\Psi}$	q_{Ψ}	$-q_{\Psi}$	0

$\operatorname{SG}(54,5): \begin{cases}(X, Z) & : \text { doublet } \\ \left(\Psi, \Sigma^{C}\right) & : \text { hexaplet } \\ \phi & : \\ \text { non-trivial 1-dim. representation }\end{cases}$
non-trivial $\langle\phi\rangle$ breaks $\operatorname{SG}(54,5) \rightarrow \Delta(27)$
allowed coupling leads to mass splitting $\mathscr{L}_{\text {toy }}^{\phi} \supset M^{2}\left(|X|^{2}+|Z|^{2}\right)+\left[\frac{\mu}{\sqrt{2}}\langle\phi\rangle\left(|X|^{2}-|Z|^{2}\right)+\right.$ h.c. $]$
\Leftrightarrow CP asymmetry with calculable phases

$$
\varepsilon_{Y \rightarrow \bar{\Psi} \Psi} \propto|g|^{2}\left|h_{\Psi}\right|^{2} \operatorname{Im}[\omega]\left(\operatorname{Im}\left[I_{X}\right]-\operatorname{Im}\left|I_{Z}\right|\right)
$$

phase predicted by group theory

Group theoretical origin

 of CP violation!
Dirac Neutrino Mass and the μ Term

- Anomaly-free, discrete R-symmetries in MSSM:
M.-C. C., Michael Ratz, Christian Staudt, Patrick Vaudrevange, (2012)
- absence of perturbative mu term \Rightarrow constraints on R charges of Hu, Hd
\rightarrow non-perturbative mu term \sim TeV automatically arise

$$
\mu \sim\langle\mathscr{W}\rangle / M_{\mathrm{P}}^{2} \sim m_{3 / 2}
$$

- absence of perturbative Weinberg operator \Rightarrow constraints on R charges of leptons
\rightarrow non-perturbative, realistic Dirac neutrino mass automatically arise

$$
Y_{\nu} \sim \frac{m_{3 / 2}}{M_{\mathrm{P}}} \sim \frac{\mu}{M_{\mathrm{P}}}
$$

- solutions automatically forbid dim-4 proton decay, automatically suppress dim-5 proton decay perturbatively in superpotential

Dirac Neutrino Mass and the μ Term

- Search Abelian discrete R symmetries, \mathbb{Z}_{M}^{R} that satisfy
M.-C. C., Michael Ratz, Christian Staudt, Patrick Vaudrevange (2012)
- anomaly freedom (a la Green-Schwarz)
- forbidding mu term perturbatively
- consistent with SU(5)

- allowing usual Yukawa couplings
- Weinberg operators forbidden perturbatively
- an example: \mathbb{Z}_{8}^{R} symmetry
- at non-perturbative level $\mathscr{W}_{\text {eff }} \sim m_{3 / 2} H_{u} H_{d}+\frac{m_{3 / 2}}{M_{\mathrm{P}}} L H_{u} \bar{\nu}+\frac{m_{3 / 2}}{M_{\mathrm{P}}^{2}} Q Q Q L$
- $\Delta \mathrm{L}=2$ operators forbidden \Rightarrow no neutrinoless double beta decay
- $\Delta \mathrm{L}=4$ operators allowed \Rightarrow new LNV processes $\begin{aligned} & \text { M.-c. C., Michael Ratz, Christian Stauct, } \\ & \text { Patrick Vactreange } \\ & \text { (2012) }\end{aligned}$
- A simultaneous solution possible with discrete generation dependent R symmetries (Abelian or non-Abelian!)
M.-C.C., M. Ratz, A. Trautner, JHEP I309 (2013) 096;
M.-C.C., M.Fallbacher, M. Ratz, G.G. Ross, C. Staudt,V.Takhistov, P.Vaudrevaunge, under preparation

TeV Scale Seesaw and Non-anomalous U(1)

M.-C. C., de Gouvea, Dobrescu (2006)

- SM x U(1) ${ }_{\mathrm{NA}}+3 \mathrm{~V}_{\mathrm{R}}$: charged under $\mathrm{U}(1)_{\mathrm{NA}}$ symmetry, broken by $\langle\phi>$
- U(1) na forbids usual dim-4 Dirac operator and dim-5 Majorana operator

$$
m_{L L} \sim \frac{H H L L}{M} \rightarrow M \sim 10^{14} \mathrm{GeV}
$$

- neutrino masses generated by very high dimensional operators

- anomaly cancellation: relate generation-dependent fermion charges \Rightarrow predict mass hierarchy and mixing
- TeV cutoff possible with 3 RH neutrinos
- neutrino can either be Dirac or Majorana particles
- light sterile neutrinos: DM candidate
- TeV scale Z': probing flavor sector at LHC

TeV Scale Seesaw and Non-anomalous U(1)

- Establishing "flavorful" nature of Z': 5 sigma distinction of e and mu channels
M.-C. C., J.-R. Huang (2009)

Prediction for Sparticle Spectrum

- U(1)' family (for quarks and leptons) also dictates sparticle mass spectrum (once SUSY breaking mechanism is specified)
- U(1)' family suppresses mu term
- predict testable (RG invariant) mass sum rules in Anomaly Mediated SUSY Breaking (AMSB) among sparticles at colliders

$$
\begin{gathered}
\bar{m}_{Q_{i}}^{2}+\bar{m}_{u_{i}^{c}}^{2}+\bar{m}_{H_{u}}^{2}=\left(m_{Q_{i}}^{2}+m_{u_{i}^{c}}^{2}+m_{H_{u}}^{2}\right)_{A M S B}(i=1,2,3) \\
\bar{m}_{Q_{i}}^{2}+\bar{m}_{d_{i}^{c}}^{2}+\bar{m}_{H_{d}}^{2}=\left(m_{Q_{i}}^{2}+m_{d_{i}^{c}}^{2}+m_{H_{d}}^{2}\right)_{A M S B}(i=1,2,3) \\
\bar{m}_{L_{i}}^{2}+\bar{m}_{e_{i}^{c}}^{2}+\bar{m}_{H_{d}}^{2}=\left(m_{L_{i}}^{2}+m_{e_{i}^{c}}^{2}+m_{H_{d}}^{2}\right)_{A M S B}(i=1,2,3)
\end{gathered}
$$

functions of gauge couplings, Yukawa couplings and gravitino mass ($\mathrm{m}_{3 / 2}$)
Flavor Physics at the Collider

Summary

- Fundamental origin of fermion mass hierarchy and flavor mixing still not known
- Neutrino masses: evidence of physics beyond the SM
- Symmetries: can provide an understanding of the pattern of fermion masses and mixing
- Grand unified symmetry + discrete family symmetry \Rightarrow predictive power
- Symmetries lead to testable predictions:
- interesting leading order sum rules between quark and lepton mixing angles
- lepton flavor violating charged lepton decays and correlations among these processes
- proton (nucleon) decay
- correlations among soft SUSY parameters

Conclusion \& Outlook

(Type I) Discrete groups afford a new origin of CP violation:

BACK-UP SLIDES

Predictions: a SUSY SU(5) x T' Model

- Charged Fermion Sector: 7 parameters $\Rightarrow 9$ masses, 3 angles, 1 phase

$$
\theta_{c} \simeq\left|\sqrt{m_{d} / m_{s}}-e^{i \alpha} \sqrt{m_{u} / m_{c}}\right| \sim \sqrt{m_{d} / m_{s}}
$$

$$
S U(5) \Rightarrow M_{d}=\left(M_{e}\right)^{\top}
$$

\Rightarrow corrections to TBM
related to θ_{c}

$$
\theta_{12}^{e} \simeq \sqrt{\frac{m_{e}}{m_{\mu}}} \simeq \frac{1}{3} \sqrt{\frac{m_{d}}{m_{s}}} \sim \frac{1}{3} \theta_{c}
$$

spinorial representations in charged fermion sector \Rightarrow complex CGs
$\Rightarrow C P V$ in quark and lepton sectors

quark CP phase: $\gamma=45.6$ degrees

Georgi-Jarlskog relations at GUT scale $\Rightarrow \mathrm{V}_{\mathrm{d}, \mathrm{L}} \neq \mathrm{I}$

$$
m_{d} \simeq 3 m_{e} \quad m_{\mu} \simeq 3 m_{s}
$$

Predictions: a SUSY SU(5) x T' Model

M.-C.C, K.T. Mahanthappa Phys. Lett. B652, 34 (2007);
Phys. Lett. B68I, 444 (2009)

- Neutrino Sector:

$$
M_{R R}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) s_{0} \Lambda \quad M_{D}=\left(\begin{array}{ccc}
2 \xi_{0}+\eta_{0} & -\xi_{0} & -\xi_{0}+\eta_{0}^{\prime \prime} \\
-\xi_{0} & 2 \xi_{0}+\eta_{0}^{\prime \prime} & -\xi_{0}+\eta_{0} \\
-\xi_{0}+\eta_{0}^{\prime \prime} & -\xi_{0}+\eta_{0} & 2 \xi_{0}
\end{array}\right) \zeta_{0} \zeta_{0}^{\prime} v_{u}
$$

- Prediction for MNS matrix: (for $\left.\eta_{0}^{\prime \prime}=0\right)$

no adjustable parameters !

$$
\begin{aligned}
& m_{2}^{2}-m_{1}^{2}=\left(\eta_{0}^{4}-\left(3 \xi_{0}+\eta_{0}\right)^{4}\right) \frac{\left(\zeta_{0} \zeta_{0}^{\prime} v_{u}\right)^{2}}{S_{0}}>0 \\
& m_{3}^{2}-m_{1}^{2}=-24 \eta_{0} \xi_{0}\left(9 \xi_{0}^{2}+\eta_{0}^{2}\right) \frac{\left(\zeta_{0} \zeta_{0}^{\prime} v_{u}\right)^{2}}{S_{0}}
\end{aligned}
$$

prediction in 2009 for Dirac CP phase:
$\delta=227$ degrees
normal hierarchy predicted

Kähler Corrections

- Consider infinitesimal change, x :

$$
K=K_{\text {canonical }}+\Delta K=L^{\dagger}(1-2 x P) L
$$

- rotate to canonically normalized L’:

$$
L \rightarrow L^{\prime}=(1-x P) L
$$

\Rightarrow corrections to neutrino mass matrix

$$
\begin{aligned}
\mathcal{W}_{\nu} & =\frac{1}{2}\left(L \cdot H_{u}\right)^{T} \kappa_{\nu}\left(L \cdot H_{u}\right) \\
& \simeq \frac{1}{2}\left[(\mathbb{1}+x P) L^{\prime} \cdot H_{u}\right]^{T} \kappa_{\nu}\left[(\mathbb{1}+x P) L^{\prime} \cdot H_{u}\right] \\
& \simeq \frac{1}{2}\left(L^{\prime} \cdot H_{u}\right)^{T} \kappa_{\nu} L^{\prime} \cdot H_{u}+x\left(L^{\prime} \cdot H_{u}\right)^{T}\left(P^{T} \kappa_{\nu}+\kappa_{\nu} P\right) L^{\prime} \cdot H_{u} \\
& \quad \text { with } \quad \kappa \cdot v_{u}^{2}=2 m_{\nu}
\end{aligned}
$$

CP Transformation

- Hermiticity of the Lagrangian

$$
\mathcal{L}(\vec{x}, t)=\alpha \mathcal{O}(\vec{x}, t)+\alpha^{*} \mathcal{O}^{\dagger}(\vec{x}, t)
$$

- Under (quantum field theory) CP Transformation

$$
\mathcal{O}(\vec{x}, t) \xrightarrow{\mathfrak{C P}} \mathcal{O}^{\dagger}(-\vec{x}, t), \quad \alpha \xrightarrow{\mathcal{C P}^{P}} \alpha
$$

- The Lagrangian

$$
\begin{gathered}
-\mathcal{L}_{\text {Yuk }} \supset \bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{D}_{R, i}\left(M_{d}\right)_{i j} Q_{L, j}+\bar{E}_{R, i}\left(M_{e}\right)_{i j} \ell_{L, j}+h . c . \\
\left(\bar{U}_{R} M_{u} Q_{L}\right)^{\dagger}=\left(U_{R}^{\dagger} \gamma_{0} M_{u} Q_{L}\right)^{\dagger}=\bar{Q}_{L} M_{u}^{\dagger} U_{R}
\end{gathered}
$$

- CP Violation \Rightarrow Complex Mass Matrices

$$
\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\text { eP }} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}
$$

Generalized CP Transformation

setting w/ discrete symmetry G
generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)
invariant contraction/coupling in A_{4} or T^{\prime}

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{\mathbf{3}}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

$$
\omega=\mathrm{e}^{2 \pi \mathrm{i} / 3}
$$

canonical CP transformation maps $A_{4} / \mathrm{T}^{\prime}$ invariant contraction to something non-invariant
\Rightarrow need generalized CP transformation $\widetilde{C P}: \phi \stackrel{\widetilde{C P}}{\longmapsto} \phi^{*}$ as usual but

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \xrightarrow{\widetilde{C P}}\left(\begin{array}{l}
x_{1}^{*} \\
x_{3}^{*} \\
x_{2}^{*}
\end{array}\right) \quad \&\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \xrightarrow{\widetilde{\widetilde{C P}}}\left(\begin{array}{l}
y_{1}^{*} \\
y_{3}^{*} \\
y_{2}^{*}
\end{array}\right)
$$

Physical CP Transformation

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Not every outer automorphism defines a physical CP transformation!

proper CP transformations:
class-inverting automorphisms of G

How (Not) to Generalize CP

proper CP transformations

map field operators to their own Hermitean conjugates
(T) violation of physical CP is prerequisite for a non-trivial

$$
\varepsilon_{i \rightarrow f}=\frac{|\Gamma(i \rightarrow f)|^{2}-|\Gamma(\bar{l} \rightarrow \bar{f})|^{2}}{|\Gamma(i \rightarrow f)|^{2}+|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}}
$$

\Rightarrow connection to observed SR, baryogenesis \& ...

CP-like transformations

map some field operators to some other operators
such transformations have sometimes been called "generalized CP
transformations" in the literature
however, imposing CP-like transformations does not imply physical CP conservation
\Leftrightarrow NO connection to observed SR, baryogenesis \& ...

Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$
\begin{aligned}
\mathrm{FS}\left(\boldsymbol{r}_{i}\right) & :=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}\left(g^{2}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left[\rho_{\boldsymbol{r}_{i}}(g)^{2}\right] \\
\mathrm{FS}\left(\boldsymbol{r}_{i}\right) & = \begin{cases}+1, & \text { if } \boldsymbol{r}_{i} \text { is a real representation, } \\
0, & \text { if } \boldsymbol{r}_{i} \text { is a complex representation, } \\
-1, & \text { if } \boldsymbol{r}_{i} \text { is a pseudo-real representation. }\end{cases}
\end{aligned}
$$

- Twisted Frobenius indicator

Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)

$$
\begin{aligned}
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & =\frac{1}{|G|} \sum_{g \in G}\left[\rho_{\boldsymbol{r}_{i}}(g)\right]_{\alpha \beta}\left[\rho_{\boldsymbol{r}_{i}}(u(g))\right]_{\beta \alpha} \\
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & = \begin{cases}+1 \forall i, & \text { if } u \text { is a BDA, } \\
+1 \text { or }-1 \quad \forall i, & \text { if } u \text { is class-inverting and involutory, } \\
\text { different from } \pm 1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Examples

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Type I: all odd order non-Abelian groups

group	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	T_{7}	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$
SG	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$

- Type IIA: dihedral and all Abelian groups

group	S_{3}	Q_{8}	A_{4}	$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$	$\mathrm{~T}^{\prime}$	S_{4}	A_{5}
SG	$(6,1)$	$(8,4)$	$(12,3)$	$(24,1)$	$(24,3)$	$(24,12)$	$(60,5)$

- Type IIB

group	$\Sigma(72)$	$\left(\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{4}$
SG	$(72,41)$	$(144,120)$

Decay Asymmetry

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- Decay asymmetry

$$
\begin{aligned}
\epsilon_{Y \rightarrow \bar{\Phi} \Phi} & =\frac{\Gamma(Y \rightarrow \bar{\Phi} \Phi)-\Gamma\left(Y^{*} \rightarrow \bar{\Phi} \Phi\right)}{\Gamma(Y \rightarrow \bar{\Phi} \Phi)+\Gamma\left(Y^{*} \rightarrow \bar{\Phi} \Phi\right)} \\
& \propto \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[\operatorname{tr}\left(F^{\dagger} H_{\Psi} F H_{\Sigma}^{\dagger}\right)\right]+\operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\operatorname{tr}\left(G^{\dagger} H_{\Psi} G H_{\Sigma}^{\dagger}\right)\right] \\
& =|f|^{2} \operatorname{Im}\left[I_{S}\right] \operatorname{Im}\left[h_{\Psi} h_{\Sigma}^{*}\right]+|g|^{2} \operatorname{Im}\left[I_{X}\right] \operatorname{Im}\left[\omega h_{\Psi} h_{\Sigma}^{*}\right] . \\
& \underbrace{\text { one-loop integral } I_{X}=I\left(M_{X}, M_{Y}\right)}_{\text {one-loop integral } I_{S}=I\left(M_{S}, M_{Y}\right)}
\end{aligned}
$$

- properties of ε
- invariant under rephasing of fields
- independent of phases of f and g
- basis independent

Some Outer Automorphisms of $\Delta(27)$

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

- sample outer automorphisms of $\Delta(27)$

$$
\begin{aligned}
& u_{1}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{2}, \mathbf{1}_{4} \leftrightarrow \mathbf{1}_{5}, \mathbf{1}_{7} \leftrightarrow \mathbf{1}_{8}, \mathbf{3} \rightarrow U_{u_{1}} \mathbf{3}^{*} \\
& u_{2}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{4}, \mathbf{1}_{2} \leftrightarrow \mathbf{1}_{8}, \mathbf{1}_{3} \leftrightarrow \mathbf{1}_{6}, \mathbf{3} \rightarrow U_{u_{2}} \mathbf{3}^{*} \\
& u_{3}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{8}, \mathbf{1}_{2} \leftrightarrow \mathbf{1}_{4}, \mathbf{1}_{5} \leftrightarrow \mathbf{1}_{7}, \mathbf{3} \rightarrow U_{u_{3}} \mathbf{3}^{*} \\
& u_{4}: \mathbf{1}_{1} \leftrightarrow \mathbf{1}_{7}, \mathbf{1}_{2} \leftrightarrow \mathbf{1}_{5}, \mathbf{1}_{3} \leftrightarrow \mathbf{1}_{6}, \mathbf{3} \rightarrow U_{u_{4}} \mathbf{3}^{*} \\
& u_{5}: \mathbf{1}_{i} \leftrightarrow \mathbf{1}_{i}^{*}, \mathbf{3} \rightarrow U_{u_{5}} \mathbf{3}
\end{aligned}
$$

- twisted Frobenius-Schur indicators

\boldsymbol{R}	$\mathbf{1}_{0}$	$\mathbf{1}_{1}$	$\mathbf{1}_{2}$	$\mathbf{1}_{3}$	$\mathbf{1}_{4}$	$\mathbf{1}_{5}$	$\mathbf{1}_{6}$	$\mathbf{1}_{7}$	$\mathbf{1}_{8}$	$\mathbf{3}$	$\overline{\mathbf{3}}$
$\mathrm{FS}_{u_{1}}(\boldsymbol{R})$	1	1	1	0	0	0	0	0	0	1	1
$\mathrm{FS}_{u_{2}}(\boldsymbol{R})$	1	0	0	1	0	0	1	0	0	1	1
$\mathrm{FS}_{u_{3}}(\boldsymbol{R})$	1	0	0	0	0	1	0	1	0	1	1
$\mathrm{FS}_{3}(\boldsymbol{R})$	1	0	0	1	0	0	1	0	0	1	1
$\mathrm{FS}_{u_{5}}(\boldsymbol{R})$	1	1	1	1	1	1	1	1	1	0	0

- none of the u_{i} maps all representations to their conjugates
- however, it is possible to impose CP in (non-generic) models, where only a subset of representations are present, e.g. $\quad\left\{\boldsymbol{r}_{i}\right\} \subset\left\{\mathbf{1}_{0}, \mathbf{1}_{5}, \mathbf{1}_{7}, \mathbf{3}, \overline{\mathbf{3}}\right\}$

Mechanisms Naturally Suppress Neutrino Masses with TeV Scale New Physics

Two examples:

- TeV scale U(1)' Family Symmetry for quarks and leptons
- associated Z' collider phenomenology
- Discrete R-Symmetry in SUSY
- simultaneous solution to mu problem, proton decay problem, naturally suppressed Dirac neutrino mass

before θ_{13} discovery

Sum Rules: Quark-Lepton Complementarity

Quark Mixing		
mixing parameters	best fit	3σ range
$\theta^{a}{ }_{23}$	2.36°	$2.25^{\circ}-2.48^{\circ}$
$\theta^{a}{ }_{12}$	12.88°	$12.75^{\circ}-13.01^{\circ}$
$\theta^{a}{ }_{13}$	0.21°	$0.17^{\circ}-0.25^{\circ}$

mixing parameters	best fit	3σ range
$\theta^{\mathrm{e}}{ }_{23}$	42.8°	$35.5^{\circ}-53.5^{\circ}$
$\theta^{\mathrm{e}}{ }_{12}$	34.4°	$31.5^{\circ}-37.6^{\circ}$
$\theta^{\mathrm{e}}{ }_{13}$	5.6°	$\leq 12.5^{\circ}$

- QLC-I

$$
\theta_{\mathrm{c}}+\theta_{\text {sol }} \cong 45^{\circ} \quad \text { Raidal, ‘04; Smirnov, Minakata, ‘04 }
$$

(BM)

$$
\theta^{\mathrm{a}} 23+\theta^{\mathrm{e}} 23 \cong 45^{\circ}
$$

- QLC-II

$$
\tan ^{2} \theta_{\text {sol }} \cong \tan ^{2} \theta_{\text {sol }, \text { TBM }}+\left(\theta_{\mathrm{c}} / 2\right)^{*} \cos \delta_{\mathrm{e}}
$$

Ferrandis, Pakvasa; King; Dutta, Mimura; M.-C.C., Mahanthappa
(TBM) $\quad \theta_{13} \cong \theta_{c} / 3 \sqrt{ } 2$

- testing sum rules: a more robust way to distinguish different classes of models

> measuring leptonic mixing parameters to the precision of those in quark sector

after θ_{13} discovery

Sum Rules: Quark-Lepton Complementarity

Quark Mixing		
mixing parameters	best fit	3σ range
$\theta^{a}{ }_{23}$	2.36°	$2.25^{\circ}-2.48^{\circ}$
$\theta^{a}{ }_{12}$	12.88°	$12.75^{\circ}-13.01^{\circ}$
$\theta^{a}{ }_{13}$	0.21°	$0.17^{\circ}-0.25^{\circ}$

mixing parameters	best fit	3σ range
$\theta^{\mathrm{e}}{ }_{23}$	38.4°	$35.1^{\circ}-52.6^{\circ}$
$\theta^{\mathrm{e}}{ }_{12}$	33.6°	$30.6^{\circ}-36.8^{\circ}$
$\theta^{\mathrm{e}}{ }_{13}$	8.9°	$7.5^{\circ}-10.2^{\circ}$

- QLC-I

$$
\theta_{\mathrm{c}}+\theta_{\text {sol }} \cong 45^{\circ} \quad \text { Raidal, ‘04; Smirnov, Minakata, ‘04 }
$$

(BM) $\theta^{\mathrm{a}} \mathrm{ar}_{23}+\theta^{\mathrm{e}}{ }_{23} \cong 45^{\circ}$ inconsistent @ 2σ

- QLC-II

$$
\tan ^{2} \theta_{\text {sol }} \cong \tan ^{2} \theta_{\text {sol }, \text { TBM }}+\left(\theta_{\mathrm{c}} / 2\right)^{*} \cos \delta_{\mathrm{e}}
$$

Ferrandis, Pakvasa; King; Dutta, Mimura; M.-C.C., Mahanthappa
(TBM)

$$
\theta^{\mathrm{e}} \mathrm{e}_{3} \cong \theta_{\mathrm{c}} / 3 \sqrt{ } 2 \text { Too small }
$$

- testing sum rules: a more robust way to distinguish different classes of models

> measuring leptonic mixing parameters to the precision of those in quark sector

