CP Violation in B Decays

 and
Search for New Physics

Leo Piilonen, Virginia Tech on behalf of the Belle Collaboration

Acknowledgements:
Kay Kinoshita, Hiroshi Nakano, Martin Ritter,
Veronika Chobanova, Luis Pesántez, Gagan Mohanty,
Zbynek Drásal, Minakshi Nayak, Simone Donati,
Rose Koopman, Tadeusz Lesiak, Dan Johnson, Antonio Romero Vidal, Anton Poluektov, D. Vieira, Marta Calvi, Angelo Di Canto, Laurence Carson, Francesca Dordei, Julian Wishahi, Adam Davis, Mirco Dorigo ... and probably many others

See parallel-session talks (LHCb):

- Matthew Reid: time-dependent CP in $B \rightarrow J / \psi h h$
- Jeremy Dalseno: direct ©P in $B \rightarrow D K$
- Elvina Gersabeck: CP in D decays

CP symmetry is broken in the Standard Model.

 3×3 quark-mixing matrix has one CP -violating phase.Prog. Theo. Phys. 49, 2 (1973)

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

$$
V=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\boldsymbol{\rho}-i \boldsymbol{\eta}) \tag{4}\\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \boldsymbol{\eta}) & -A \lambda^{2} & 1
\end{array}\right)
$$

Unitarity $\Rightarrow 6$ triangle relations in the complex plane,

 e.g., $V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0$
$(0,0)$
$V_{c b}^{*} V_{c d}$
$(1,0) \cdot A \lambda^{3}$
I Overconstrain by measuring angles and sides.

All measurements agree with the CKM mechanism.

$\phi_{1} \leftrightarrow \beta$
$\phi_{2} \leftrightarrow \alpha$
$\phi_{3} \leftrightarrow \gamma$

Is there some room for New Physics here?

including $\sin 2 \phi_{1}$ in the fit

Is there some room for New Physics here?

excluding $\sin 2 \phi_{1}$ from the fit

Is there some room for New Physics here?

II Scale M_{12}^{d} by complex factor Δ_{d} in $B_{d}^{0}-\bar{B}_{d}^{0}$ mixing:

Is there some room for New Physics here?

If Scale M_{12}^{s} by complex factor Δ_{s} in $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing:

There are three distinct ways to measure $\subset P$:

- direct CP in decay (charged \& neutral)

$$
\Gamma(B \rightarrow f) \neq \Gamma(\bar{B} \rightarrow \bar{f}) \quad\left|\overline{\mathcal{A}}_{\bar{f}} / \mathcal{A}_{f}\right| \neq 1
$$

- $\mathbf{C P}$ in mixing (neutral)

$$
\Gamma(B \rightarrow \bar{B}) \neq \Gamma(\bar{B} \rightarrow B)
$$

$$
\left|B_{H, L}\right\rangle=p\left|B^{0}\right\rangle \pm q\left|\bar{B}^{0}\right\rangle
$$

$$
|q / p| \neq 1
$$

- CP in interference between mixing \& decay (neutral)

$$
\Gamma\left(B \rightarrow f_{\mathrm{CP}}\right) \neq \Gamma\left(\bar{B} \rightarrow f_{\mathrm{CP}}\right) \quad \arg \quad\left|\frac{q}{p} \frac{\overline{\mathcal{A}}_{\bar{f}}}{\mathcal{A}_{f}}\right| \neq 0
$$

Notes: B could be replaced by D. f_{CP} is a CP eigenstate.

Direct CP Violation

Direct CPV in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}, \mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$

No effect expected in $\mathrm{b} \rightarrow \operatorname{scc}(\mathrm{J} / \psi \mathrm{K})$, possible in $\mathrm{b} \rightarrow \mathrm{dcc}(\mathrm{J} / \psi \pi)$

$$
A(J / \psi X)=A(J / \psi X)_{R A W}+A(X)
$$

Correction in rec. asym. between X^{+}and X^{-}
Raw asym. between rec. B^{+}and B^{-}

- Regular reversal of magnetic field minimizes $A(\pi)$
- $A(K)$ measured in $K^{* 0} \rightarrow K^{+} \pi-$

Event selection chosen to minimize statistical uncertainty on $A(J / \psi K)_{\text {RAW }}$

Direct CPV in $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}, \mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$

Type of uncertainty	$A^{J / \psi K}(\%)$	$A^{J / \psi \pi}(\%)$
Statistical	0.36	4.4
Mass range	0.022	0.55
Fit function	0.011	0.69
$\Delta A_{\text {tracking }}$	0.05	0.05
ΔA_{K}	0.043	n / a
Total systematic uncertainty	0.07	0.9
Total uncertainty	0.37	4.5

$A(J / \psi K)=[0.59 \pm 0.36(s t a t) \pm 0.07$ (syst) $] \%$ with a 1% correction due to $\mathrm{K}^{+} / \mathrm{K}^{-}$asymmetry

$$
A(J / \psi \pi)=[-4.2 \pm 4.4(s t a t) \pm 0.9(s y s t)] \%
$$

$$
\underset{\substack{\text { preliminary }}}{B_{d}^{0} \rightarrow \eta^{\prime}} K^{*}(892)
$$

penguin-dominated mode
4-dimensional unbinned extended maximumlikelihood fit

projections shown here
$B_{d}^{0} \rightarrow \eta^{\prime} K^{*}(892)$
preliminary

$$
\mathcal{A}_{\mathrm{CP}}=-0.22 \pm_{0.17}^{0.18} \pm_{0.03}^{0.02}
$$

Polarization amplitudes and CP asymmetries in

 $B^{0} \rightarrow \phi K^{*}(892)^{0}-\mathcal{L}=1 \mathrm{fb}^{-1}$
$B^{0} \rightarrow \phi K^{*}(892)^{0}$

- $b \rightarrow s s \bar{s}$ FCNC decay, penguin in SM \Longrightarrow sensitive to NP contributions in the loop.
- $B^{0} \rightarrow K^{+} K^{-} K^{+} \pi^{-}$final state studied.
- $N_{\text {sig }}=1655 \pm 42$

- Angular analysis of time-integrated decay rates to disentangle helicity structure of the $P \rightarrow V V$ decay (L= 0, 1, 2):
- P-wave: longitudinal \mathcal{A}_{0} and transverse, parallel $\mathcal{A}_{\|}$and perpendicular \mathcal{A}_{\perp};
- S-wave: $\mathcal{A}_{S}(K \pi)\left(B^{0} \rightarrow \phi K^{+} \pi^{-}\right)$and $\mathcal{A}_{S}(K K)\left(B^{0} \rightarrow K^{*}(892)^{0} K^{-} K^{+}\right)$.

Polarization amplitudes and CP asymmetries in $B^{0} \rightarrow \phi K^{*}(892)^{0}-\mathcal{L}=1 \mathrm{fb}^{-1}$

$A_{0}^{C P}$	$=-0.003 \pm 0.038$ (stat) ± 0.005 (syst)
$A_{\perp}^{C P}$	$=+0.047 \pm 0.072$ (stat) ± 0.009 (syst)
$A_{S(K \pi)}^{C P}$	$=+0.073 \pm 0.091$ (stat) ± 0.035 (syst)
$A_{S(K K)}^{C P}$	$=-0.209 \pm 0.105$ (stat) ± 0.012 (syst)

- B^{0} and \bar{B}^{0} decays are separated according to the charge of the kaon from the $K^{* 0}$.
- CP-asymmetries consistent with zero.

Direct $C P$ in $B^{0} \rightarrow \phi K^{*}(892)^{0}-\mathcal{L}=1 \mathrm{fb}^{-1}$

- Final state tagged by $K^{* 0} \rightarrow K^{+} \pi^{-}$decay.
- Raw asymmetry measured from integrated rates:

$$
A=\frac{N\left(\bar{B}^{0} \rightarrow \phi \bar{K}^{*}(892)^{0}\right)-N\left(B^{0} \rightarrow \phi K^{*}(892)^{0}\right)}{N\left(\bar{B}^{0} \rightarrow \phi \bar{K}^{*}(892)^{0}\right)+N\left(B^{0} \rightarrow \phi K^{*}(892)^{0}\right)}
$$

- Correcting for production and detection asymmetries (determined using the control channel $\left.B^{0} \rightarrow J / \psi K^{*}(892)^{0}\right)$:

$$
A^{C P}\left(\phi K^{* 0}\right)=(+1.5 \pm 3.2 \text { (stat) } \pm 0.5 \text { (syst) }) \%
$$

- Systematic uncertainty from the difference in kinematic and trigger used to select $B^{0} \rightarrow J / \psi K^{*}(892)^{0}$ events.
- No direct $C P$ in agreement with (and a factor of 2 more precise than):

$$
\begin{array}{cll}
A^{C P}\left(\phi K^{* 0}\right)=(+1 \pm 6 \text { (stat) } \pm 3 \text { (syst) }) \% & \text { Babar [Phys.Rev.D 78, 092008(2008)] } \\
A^{C P}\left(\phi K^{* 0}\right)=(-0.7 \pm 4.8 \text { (stat) } \pm 2.1 \text { (syst) }) \% & \text { Belle [Phys.Rev.D 88, 072004(2013)] }
\end{array}
$$

The weak phase ϕ_{3} is measured in $B^{-} \rightarrow D^{(*)} K^{(*)-}$ decays by the interference between two amplitudes if both $D^{(*) 0}$ and $\bar{D}^{(*) 0}$ decay to a common final state

Then $B^{-} \rightarrow \overline{\widetilde{D}} K^{-}$with $|\overline{\widetilde{D}}\rangle \propto\left|D^{0}\right\rangle+r_{B} e^{i\left(\delta_{B}-\phi_{3}\right)}\left|\bar{D}^{0}\right\rangle$
and $B^{+} \rightarrow \widetilde{D} K^{+}$with $|\widetilde{D}\rangle \propto\left|D^{0}\right\rangle+r_{B} e^{i\left(\delta_{B}+\phi_{3}\right)}\left|\bar{D}^{0}\right\rangle$
where $r_{B}=\left|\frac{\mathcal{A}\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{\mathcal{A}\left(B^{-} \rightarrow D^{0} K^{-}\right)}\right| \approx \mathcal{O}(0.1)$ including colour suppression ${ }_{19}$

Three techniques to measure ϕ_{3} use rare decays of the form $B^{-} \rightarrow \bar{D}^{0} K^{-}$
\checkmark GLW: use CP eigenstates $\left.|D\rangle_{1,2} \propto\left|D^{0}\right\rangle \pm \bar{D}^{0}\right\rangle$ Gronau and London, PLB 253, 483 (1991)
Gronau and Wyler, PLB 265, 172 (1991)
Gronau, PRD 58, 037301 (1998)
Gronau, PLB 557, 198 (2003)
\checkmark ADS: use $\left|K^{+} \pi^{-}\right\rangle$state (CF for \bar{D}^{0}; DCS for D^{0}) Atwood, Dunietz and Soni, PRL 78, 3257 (1997)
\checkmark GGSZ: use Dalitz analysis of $\left|K_{S} \pi^{+} \pi^{-}\right\rangle$state Giri, Grossman, Soffer and Zupan, PRD 68, 054018 (2003) Bondar, Proc BINP Dalitz Analysis Meeting (2002) (unpublished)

Combined ADS, GLW ($1 \mathrm{fb}{ }^{-1}$) and GGSZ (3 fb-1)

PLB 726, 151 (2013)

$\gamma=(67 \pm 12)^{\circ}$

By 2018, expect $\sigma_{\gamma} \sim 40$
$B \rightarrow X_{s+d} \gamma$
Expectations:

Channel	$\mathrm{A}_{\mathrm{CP}}(\mathrm{SM})$
$\mathrm{B} \rightarrow X_{s} \gamma$	$[-0.6 \%,+2.8 \%]$
$\mathrm{B} \rightarrow X_{d} \gamma$	$[-62 \%,+14 \%]$
$\mathrm{B} \rightarrow X_{s+d} \gamma$	$0 \quad$

Cancellation due to unitarity, negligible theory error!

B

$$
\begin{gathered}
f=X_{s+d} \gamma \\
A_{\mathrm{CP}}=\frac{\Gamma(\bar{B} \rightarrow \bar{f})-\Gamma(B \rightarrow f)}{\Gamma(\bar{B} \rightarrow \bar{f})+\Gamma(B \rightarrow f)} \\
\left.\right|_{\begin{array}{l}
\text { Using } \\
\text { tag-lepton } \\
\text { charge }
\end{array}} ^{A_{\mathrm{CP}}}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}}
\end{gathered}
$$

- Inclusive method: reduce model uncertainty but has high background.
- High energy photon (1.7-2.8 GeV) and lepton (e, μ) for tagging
- Mass veto for $\pi^{0}(\eta) \rightarrow \gamma \gamma$

$B \rightarrow X_{s+d} \gamma$

- Wrong tag factors

$$
\begin{aligned}
\omega & =\omega_{\mathrm{osc}}+\omega_{2 n d}+\omega_{\mathrm{misID}} \\
& =0.1413 \pm 0.0052 \\
A_{\mathrm{CP}} & =\frac{1}{1-2 \omega} A_{\mathrm{CP}}^{\mathrm{meas}}
\end{aligned}
$$

- Asymmetry in lepton ID, study in $B \rightarrow X \mathrm{~J} / \Psi\left(I^{+} I^{-}\right)$, tag-and-probe

$$
\varepsilon^{ \pm}=\frac{N_{\text {pass }}}{N_{\text {pass }}+N_{\text {fail }}}
$$

$$
\mathrm{A}_{\operatorname{det}}=\frac{\varepsilon^{+}-\varepsilon^{-}}{\varepsilon^{+}+\varepsilon^{-}} \quad \mathrm{A}_{\operatorname{det}}=(0.10 \pm 0.22) \%
$$

- Asymmetry in BB bkg: measured in data ($\mathrm{E}_{\gamma}{ }^{*}<1.7 \mathrm{GeV}$)
$\mathrm{A}_{\mathrm{bkg}}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \quad \mathrm{A}_{\mathrm{bkg}}=(-0.14 \pm 0.78) \%$
- These asymmetries are bias!, must correct them

$$
B \rightarrow X_{s+d} \gamma
$$

preliminary

After background subtraction

Raw asymmetry is corrected for mis-tagging and asymmetry bias (see previous page)

> CP Violation in $B^{0} \bar{B}^{0}$ Mixing

CP in mixing, time-integrated: a_{sl}^{s} PLB 728, 607 (2014) Analyse $B_{s}{ }^{0} \rightarrow D_{s} X \mu v$ decays (2011 data).

$$
\begin{aligned}
A_{\text {meas }} & \equiv \frac{\Gamma\left[D_{s}^{-} \mu^{+}\right]-\Gamma\left[D_{s}^{+} \mu^{-}\right]}{\Gamma\left[D_{s}^{-} \mu^{+}\right]+\Gamma\left[D_{s}^{+} \mu^{-}\right]} \\
& =\frac{a_{\mathrm{sl}}^{s}}{2}+\left[a_{\mathrm{P}}-\frac{a_{s 1}^{s}}{2} \frac{\int_{t=0}^{\infty} e^{-\Gamma_{s} t} \cos \left(\Delta M_{s} t\right) \epsilon(t) d t}{\int_{t=0}^{\infty} e^{-\Gamma_{s} t} \cosh \left(\frac{\Delta \Gamma_{s t}}{2}\right) \epsilon(t) d t}\right.
\end{aligned}
$$

$\mathrm{B}_{\mathrm{s}}{ }^{\circ}$ production asymmetry negligible: highly suppressed $\left(10^{-4}\right)$ due to fast oscillations.

Opposite magnet polarities: cancel most of detection asymmetries of charged particles.

Using large control samples:
correct for tracking (0.13\%) and background asymmetries (0.05\%); account for difference in trigger and PID efficiencies for μ^{+}and μ^{-}.

$$
\mathrm{a}_{\mathrm{sl}}^{\mathrm{s}}=(-0.06 \pm 0.50 \pm 0.36) \%
$$

World's best measurement, consistent with SM expectation

DO 3 σ deviation from SM neither ruled out nor confirmed

LHCh CP in mixing with time-dependence

$$
H=\left(\begin{array}{cc}
m_{0} & M_{12} \\
M_{12}^{*} & m_{0}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right)
$$

- Mixing due to $2^{\text {nd }}$ order weak transition, $\mathrm{M}_{12}, \Gamma_{12}{ }^{1} 0$
- NP could contribute to $M_{12}\left(m \gg m_{B}\right)$
- Imperative to measure amplitude and phase of M_{12} precisely!
\square Theoretical input (lattice) CRUCIAL here to shrink this band

$\square \mathrm{V}_{\mathrm{td}}$ and $\sin (2 \beta)$ also measure apex using NP-sensitive processes!

HCb Amplitude of $B_{(s)}^{0} \bar{B}_{(s)}^{0}$ time-dependent mixing

LHCb Phase of $B_{s}^{0} \bar{B}_{s}^{0}$ mixing ϕ_{s}

$$
A(t)=\frac{\Gamma\left(f_{C P}\right)-\bar{\Gamma}\left(f_{C P}\right)}{\Gamma\left(f_{C P}\right)+\bar{\Gamma}\left(f_{C P}\right)} \propto \sin \phi_{s} \sin \left(\Delta m_{s} t\right)
$$

$$
\begin{aligned}
\phi_{s} & =0.01 \pm 0.07 \quad \text { (stat) } \pm 0.01 \quad \text { (syst) } \mathrm{rad} \\
\Gamma_{s} & =0.661 \pm 0.004 \text { (stat) } \pm 0.006 \text { (syst) } \mathrm{ps}^{-1} \\
\Delta \Gamma_{s} & =0.106 \pm 0.011 \text { (stat) } \pm 0.007 \text { (syst) } \mathrm{ps}^{-1}
\end{aligned}
$$

- Large improvement in precision on ϕ_{s}
\rightarrow Tight constraints on NP, but O(20\%)
NP contributions not ruled out.
$\phi_{s}=0.075 \pm 0.067 \pm 0.008$

CP Violation

in Mixing \& Decay Interference

Time-dependent CP asymmetry
 in mixing \& decay interference:
Asymmetry $(\Delta t)=\frac{\Gamma\left(\bar{B} \rightarrow f_{\mathrm{CP}}\right)-\Gamma\left(B \rightarrow f_{\mathrm{CP}}\right)}{\Gamma\left(\bar{B} \rightarrow f_{\mathrm{CP}}\right)+\Gamma\left(B \rightarrow f_{\mathrm{CP}}\right)}$
$=\mathcal{A}_{\mathrm{CP}} \cos (\Delta m \Delta t)+\mathcal{S}_{\mathrm{CP}} \sin (\Delta m \Delta t)$
${ }^{\ell}$ also denoted $-\mathcal{C}_{\mathrm{CP}}$
Mixing \& decay interference: $\mathcal{S}_{\mathrm{CP}}=+\frac{2 \operatorname{Im} \lambda_{\mathrm{CP}}}{1+\left|\lambda_{\mathrm{CP}}\right|^{2}}=-\xi_{\mathrm{CP}} \sin \left(2 \phi_{1}\right)$
Decay via multiple paths: $\quad \mathcal{A}_{\mathrm{CP}}=-\frac{1-\left|\lambda_{\mathrm{CP}}\right|^{2}}{1+\left|\lambda_{\mathrm{CP}}\right|^{2}}=0$ where $\lambda_{\mathrm{CP}}=\xi_{f \mathrm{CP}} \frac{q}{p} \frac{\bar{A}_{f_{\mathrm{CP}}}}{A_{f_{\mathrm{CP}}}}$

$B_{d}^{0} \rightarrow \omega K_{S}^{0}$
preliminary

$$
\begin{gathered}
\mathcal{A}_{\mathrm{CP}}=-0.36 \pm 0.19 \pm 0.05 \\
\mathcal{S}_{\mathrm{CP}}=+0.91 \pm 0.32 \pm 0.05
\end{gathered}
$$

First evidence (3.1σ) for CP in this mode. No sign of New Physics.
$B_{d}^{0} \rightarrow \eta^{\prime} K^{0}$ preliminary

penguin-dominated (tree is color- and Cabibbo-suppressed)

$B_{d}^{0} \rightarrow \eta^{\prime} K^{0}$
No sign of New Physics

Decay mode	$-\xi_{f} \mathcal{S}_{f}$	\mathcal{A}_{f}
$\eta^{\prime} K_{S}^{0}$	$+0.71 \pm 0.07$	$+0.02 \pm 0.05$
$\eta^{\prime} K_{L}^{0}$	$+0.46 \pm 0.21$	$+0.09 \pm 0.14$
$\eta^{\prime} K^{0}$	$+0.68 \pm 0.07 \pm 0.03$	$+0.03 \pm 0.05 \pm 0.04$

$B_{d}^{0} \rightarrow K_{S} \eta \gamma$

For 100% photon polarization, there is no common $s \vec{\gamma}$ final state \Rightarrow no time-dependent CP . In reality, for $B^{0} \rightarrow K_{S} \eta \gamma$, SM expectation is $\mathcal{S}_{\mathrm{CP}} \approx 2\left(m_{s} / m_{b}\right) \sin \left(2 \phi_{1}\right)$.

New Physics with alternate helicity structure can give time-dependent ©P without affecting $\Gamma(b \rightarrow s \gamma)$.

penguin mode
3-dimensional extended maximum-likelihood fit
$B_{d}^{0} \rightarrow K_{S} \eta \gamma$
preliminary

$$
\begin{aligned}
\mathcal{A}_{\mathrm{CP}} & =-0.48 \pm 0.41 \pm 0.07 \\
\mathcal{S}_{\mathrm{CP}} & =-1.32 \pm 0.77 \pm 0.36
\end{aligned}
$$

... both consistent with 0

Time dependent $C P$ in $B_{s}^{0} \rightarrow K^{+} K^{-}-\mathcal{L}=1 \mathrm{fb}^{-1}$

[J. High Energy Phys. 10 (2013) 183]
Time-dependent CP asymmetry:

$$
A^{C P}(t)=\frac{\Gamma_{\bar{B}_{s}^{0} \rightarrow K K}(t)-\Gamma_{B_{s}^{0} \rightarrow K K}(t)}{\Gamma_{\bar{B}_{s}^{0} \rightarrow K K}(t)+\Gamma_{B_{s}^{0} \rightarrow K K}(t)}=\frac{-C_{K K} \cos \left(\Delta m_{s} t\right)+S_{K K} \sin \left(\Delta m_{s} t\right)}{\cosh \left(\frac{\Delta \Gamma_{s}}{2} t\right)-\mathcal{A}_{K K}^{\Delta \Gamma_{s}} \sinh \left(\frac{\Delta \Gamma_{s}}{2} t\right)}
$$

where $C_{K K}=$ direct $C P, S_{K K}=$ mixing-induced $\mathscr{C P}$ and $\mathcal{A}_{K K}^{\Delta \Gamma_{S}}=\mathscr{G}$ in interference.
Time-dependent analysis, flavour-tagging to identify initial B_{s}^{0} flavour: calibrated using flavour-specific $B^{0} \rightarrow K^{+} \pi^{-}$events.

$$
\begin{array}{|ll|}
\hline C_{K K} & =0.14 \pm 0.11 \pm 0.03 \\
S_{K K} & =0.30 \pm 0.12 \pm 0.04 \\
\hline
\end{array}
$$

Time dependent $C P$ in $B^{0} \rightarrow \pi^{+} \pi^{-}-\mathcal{L}=1 \mathrm{fb}^{-1}$

[J. High Energy Phys. 10 (2013) 183]
Time-dependent CP asymmetry:

$$
A^{C P}(t)=\frac{\Gamma_{\bar{B}^{0} \rightarrow \pi \pi}(t)-\Gamma_{B^{0} \rightarrow \pi \pi}(t)}{\Gamma_{\bar{B}^{0} \rightarrow \pi \pi}(t)+\Gamma_{B^{0} \rightarrow \pi \pi}(t)}=\frac{-C_{\pi \pi} \cos \left(\Delta m_{d} t\right)+S_{\pi \pi} \sin \left(\Delta m_{d} t\right)}{\cosh \left(\frac{\Delta \Gamma_{d}}{2} t\right)-\mathcal{A}_{\pi \pi}^{\Delta \Gamma_{d}} \sinh \left(\frac{\Delta \Gamma_{d}}{2} t\right)}
$$

where $C_{\pi \pi}=$ direct $C P, S_{\pi \pi}=$ mixing-induced $\mathscr{C F}$ and $\mathcal{A}_{K K}^{\Delta \Gamma_{s}}=\mathscr{}$ in interference.
Time-dependent analysis, flavour-tagging to identify initial B^{0} flavour: calibrated using flavour-specific $B^{0} \rightarrow K^{+} \pi^{-}$events.

$C_{\pi \pi}$	$=-0.38 \pm 0.15 \pm 0.02$
$S_{\pi \pi}$	$=-0.71 \pm 0.13 \pm 0.02$
	5.6σ from $(0,0)$

$B_{d}^{0} \rightarrow \pi^{+} \pi^{-}$
tree-dominated mode
with penguin pollution ${ }_{d} \longrightarrow{ }_{d} \longrightarrow{ }_{d}$

7-dimensional unbinned extended maximum- likelihood fit

$A_{+0}=\frac{1}{\sqrt{2}} A_{+-}+A_{00}, \quad \bar{A}_{-0}=\frac{1}{\sqrt{2}} \bar{A}_{+-}+\bar{A}_{00}$

$$
B_{d}^{0} \rightarrow \pi^{+} \pi^{-}
$$

PRD 88, 092003 (2013)

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{CP}}=-0.64 \pm 0.08 \pm 0.03 \\
& \mathcal{A}_{\mathrm{CP}}=+0.33 \pm 0.06 \pm 0.03
\end{aligned}
$$

penguin-dominated mode with color-suppressed tree

not a pure CP eigenstate; needs angular analysis to extract the longitudinal component and isospin analysis to extract ϕ_{2}

6-dimensional unbinned extended maximum- likelihood fit

$$
B_{d}^{0} \rightarrow \rho^{0} \rho^{0} \text { and } B_{d}^{0} \rightarrow \pi^{+} \pi^{-}: \text {extract } \phi_{2}
$$

$B \rightarrow \pi \pi$	$23.8^{\circ}<\phi_{2}<66.8^{\circ}$ is excluded @ 1σ C.L.
$B^{0} \rightarrow \pi^{+} \pi^{-}$	772M $B \bar{B}$ pairs used
$B^{+} \rightarrow \pi^{+} \pi^{0}$	$772 \mathrm{M} B \bar{B}$
$B^{0} \rightarrow \pi^{0} \pi^{0}$	275M $B \bar{B}$

$\phi^{B \rightarrow \rho \rho} \quad \phi_{2}=(84.9 \pm 12.9)^{\circ} \Delta \phi_{2}=(0.0 \pm 9.6)^{\circ}$

PRD 88, 092003 (2013)

TCPV summary for $b \rightarrow c \bar{c} s$

TCPV summary for $b \rightarrow s q \bar{q}$ penguins

TCPV summary for $b \rightarrow s q \bar{q}$ penguins

Summary

- Many new CP-asymmetry results emerging from Belle, LHCb, ...
- I did not have time to talk about D decays here
- No significant deviations from Standard Model expectations - no New Physics yet
- Many results are still statistics-limited
- Many LHCb analyses have used only $1 / 3$ of existing data set; more data will arrive in 2015
- Belle II will take up where Belle left off - physics running starts in 2016

Backup

KEK B Factory and Belle: 1999-2010

Integrated luminosity at the B factories

\# of $B \bar{B} @ \Upsilon(4 S): 772 \mathrm{M}$ (Belle) and 475M (BaBAR)

LHCb Detector

LHCb Data Taking 2011 \& 2012

- integrated luminosity
- $1 \mathrm{fb}^{-1}$ @ 7 TeV (2011)
- $2 \mathrm{fb}^{-1}$ @ 8 TeV (2012)
- data taking efficiency >93\%
- >99\% of detector channels working
- >99\% of collected data good for analysis

A moving centre of mass is required to measure the time-dependent $\mathbb{C P}$ in $B^{0} \rightarrow J / \psi K^{0}$ etc

$\beta \gamma=\left\{\begin{array}{ll}0.56 & \text { BaBar } \\ 0.425 & \text { Belle } \\ \approx 25 & \text { LHCb }\end{array} \quad \Delta z^{\mathrm{lab}} \simeq c \beta \gamma \Delta t^{\mathrm{cm}}\right.$
tag the flavour as B by decay product(s)

Time-dependent CP asymmetry in $b \rightarrow c \bar{c} s$ is typically dominated by one tree diagram

- limited opportunity for New Physics in tree; more likely (?) to appear in $B \bar{B}$ mixing
\ldots but in $b \rightarrow s \bar{u} u, s \bar{d} d, s \bar{s} s$ is dominated by (or has only one) penguin diagram

- New Physics may appear in the loop

ADS method measures ϕ_{3} via the interference in rare $B^{-} \rightarrow\left[K^{+} \pi^{-}\right]_{D} K^{-}$decays

Cabibbo favoured D decay

ADS rate and asymmetry (relative to the common decay):

Common

Observables for $B^{+} \rightarrow D^{0}\left(\rightarrow K_{S} K \pi\right) h^{+} V_{\text {s }} /$

- This is the first ADS-like analysis to use Singly-Cabibbo-Suppressed (SCS) modes. Label final states as OS or SS comparing $K^{ \pm}$with $B^{ \pm}$
- Analysing three-body D final state requires knowledge of how the average interference amplitude ($\kappa_{\kappa_{5} K_{\pi}}$) and strong phase difference ($\delta_{K_{5} K_{\pi}}$) vary across the D Dalitz plot
- This is taken from a CLEO-c measurement, Phys. Rev. D 85 (2012) 092016
- Decay rates for $B^{+} \rightarrow D^{0} K^{+}$are:

$$
\begin{array}{ll}
\Gamma_{\mathrm{SS}, D K}^{ \pm}=z[& 1+r_{B}^{2} r_{D}^{2}+2 r_{B} r_{D} \kappa_{K_{\mathrm{S}}^{0} K \pi} \cos \left(\delta_{B} \pm \gamma-\delta_{K_{\mathrm{S}}^{0} K \pi}\right) \\
\Gamma_{\mathrm{OS}, D K}^{ \pm}=z[& r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \kappa_{K_{\mathrm{S}}^{0} K \pi} \cos \left(\delta_{B} \pm \gamma+\delta_{K_{\mathrm{S}}^{0} K \pi}\right)
\end{array}
$$

- Measure yield ratios (e.g. $\mathcal{R}_{D K / D \pi, s s}$) and charge asymmetries (e.g. $\mathcal{A}_{S S, D K}$) between the OS and SS samples, and between $D K$ and $D \pi$ final states.
- Analysis is done across whole Dalitz plane, and a restricted region around the $K^{* \pm}$ resonance,
 the coherence factor $\kappa_{\kappa_{S} K \pi}$ is higher ($\approx 1.0 \mathrm{vs} \approx 0.7$).

Results for $B^{+} \rightarrow D^{0}\left(\rightarrow K_{S} K \pi\right) h^{+}$

Measure 8 yields, with $B^{+} \rightarrow D^{0} K^{+}$and $B^{+} \rightarrow D^{0} \pi^{+}$ separated by $\mathrm{OS} / \mathrm{SS}$ and charge of $\mathrm{B}^{ \pm}$

- Charge-summed yields for OS and SS $D^{0} K^{+}$are 71 and 145 respectively.
- Sensitivity to γ appears to be improved by taking $K^{* \pm}$ region, due to higher coherence factor.
- Good prospects for future analysis of $K^{* \pm}$ region with more statistics.

Observable	Whole Dalitz plot	$K^{*}(892)^{ \pm}$region
$\mathcal{R}_{\mathrm{SS} / \mathrm{OS}}$	$1.528 \pm 0.058 \pm 0.025$	$2.57 \pm 0.13 \pm 0.06$
$\mathcal{R}_{D K / D \pi, \mathrm{SS}}$	$0.092 \pm 0.009 \pm 0.004$	$0.084 \pm 0.011 \pm 0.003$
$\mathcal{R}_{D K / D \pi, \text { OS }}$	$0.066 \pm 0.009 \pm 0.002$	$0.056 \pm 0.013 \pm 0.002$
$\mathcal{A}_{\mathrm{SS}, D K}$	$0.040 \pm 0.091 \pm 0.018$	$0.026 \pm 0.109 \pm 0.029$
$\mathcal{A}_{\mathrm{OS}, D K}$	$0.233 \pm 0.129 \pm 0.024$	$0.336 \pm 0.208 \pm 0.026$
$\mathcal{A}_{\mathrm{SS}, D \pi}$	$-0.025 \pm 0.024 \pm 0.010$	$-0.012 \pm 0.028 \pm 0.010$
$\mathcal{A}_{\mathrm{OS}, D \pi}$	$-0.052 \pm 0.029 \pm 0.017$	$-0.054 \pm 0.043 \pm 0.017$

