

Results on neutrinoless double beta decay of ⁷⁶Ge from GERDA Phase I

Neslihan Becerici-Schmidt on behalf of the GERDA collaboration

Max-Planck-Institut für Physik, München

Rencontres de Blois, 18 - 23 May 2014

OUTLINE

- Double beta decay \rightarrow neutrinoless final state $0\nu\beta\beta$
- GERDA experimental design
- Phase I data taking: energy calibration & resolution, energy spectrum
- Background modeling (before unblinding of the signal window)
- Unblinding
- Results of $0\nu\beta\beta$ analysis
- Outlook on Phase II

 $0\nu\beta\beta \rightarrow GERDA \rightarrow Phase I data taking \rightarrow Background model \rightarrow Unblinding \rightarrow Results$

 $T_{1/2}$ (⁷⁶Ge) = (1.84 +0.14 - 0.10) · 10²¹ yr GERDA result (in backup slides)

J. Phys. G: Nucl. Part. Phys. 40 (2013) 035110

Rencontres de Blois 2014

Neutrinoless double beta ($0\nu\beta\beta$) decay:

$$(A, Z) \rightarrow (A, Z+2) + 2e^{-1}$$

 $\Delta L = 2$ light Majorana v, R-handed weak currents, SUSY particles...

Assuming light Majorana v ($m_{\beta\beta}$) exchange dominating:

$$(T_{1/2})^{-1} = G_{0\nu} |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2 \qquad \left[\langle m_{\beta\beta} \rangle = \left| \sum_i U_{ei}^2 m_i \right| \right]$$
Phase-space factor Nuclear matrix element
$$\nu \text{ mass spectrum: inverted/normal hierarchy?}$$
absolute mass scale?

T_{1/2} limits in the range of $10^{21} - 10^{26}$ yr (one claim for ⁷⁶Ge 0vββ decay signal)

Experimental signature: peak at $Q_{\beta\beta}$ for ⁷⁶Ge: $Q_{\beta\beta}$ = (2039.061 ± 0.007) keV B. J. Mount *et al.*, Phys. Rev. 401 C81 (2010) 032501

GERDA experiment @ LNGS of INFN, Italy search for 0vββ decay in ⁷⁶Ge

- Novel idea: operate HPGe detectors in LAr
- High-purity shields: LAr, ultra-pure water (active muon-veto)
- Minimal amount of (screened) material close to detectors

Phase-I data taking: November 2011 - May 2013

8 semi-coaxial p-type HPGe detectors (reprocessed HdM and IGEX diodes)

 \rightarrow Total mass: 14.6 kg (2 unstable dets. omitted)

5 new custom-made p-type (Phase II) BEGe detectors

 \rightarrow Total mass: 3.0 kg (1 unstable det. omitted)

Enrichment fraction (⁷⁶Ge abundance): Semi-coaxials ~86% BEGes ~88%

Calibration and energy resolution

mean FWHM @ $Q_{\beta\beta} = 2039$ keV: Semi-coaxials (4.8 ± 0.2) keV BEGes (3.2 ± 0.2) keV stable over the entire period

 $0\nu\beta\beta \rightarrow GERDA \rightarrow Phase I data taking \rightarrow Background model \rightarrow Unblinding \rightarrow Results$

THREE DATASETS: grouping of data due to energy res. and bkg. level

Semi-coaxial detectors form two subsets:

Golden 17.9 kg yr Silver 1.3 kg yr

BEGe detectors (starting from Jul-2012):

BEGe 2.4 kg yr

Total exposure 21.6 kg yr

N. Becerici Schmidt (MPI Munich)

 $0\nu\beta\beta \rightarrow GERDA \rightarrow Phase I data taking \rightarrow Background model \rightarrow Unblinding \rightarrow Results$

Spectral fit with simulated spectra in 570 – 7500 keV minus $Q_{\beta\beta} \pm 20 \text{ keV}$ (above ³⁹Ar Q = 565 keV)

Contributions at $Q_{\beta\beta}$: β -/ γ -induced events from ⁴²K (Q = 3.5 MeV), ⁶⁰Co (Q = 2.8 MeV), ²¹⁴Bi (²³⁸U) & ²⁰⁸Tl (²²⁸Th) α 's from surf. contam. + ²²²Rn in LAr

BACKGROUND MODEL AND EXPECTATIONS FIXED PRIOR TO UNBLINDING

No γ -ray line in the BW $Q_{BB} \pm 20$ keV

Partial unblinding (light grey) after calib. & bkg model fixed

- \rightarrow no γ -ray line
- \rightarrow expectations and observed agree

Background evaluation:

Flat distribution in 1930 – 2190 keV excluding two γ -ray lines 2104 ± 5 keV (²¹⁴Bi) 2119 ± 5 keV (²⁰⁸TI SEP)

→ same for all datasets (Golden, Silver and BEGe)

Eur. Phys. J. C 74 (2014) 2764

N. Becerici Schmidt (MPI Munich)

UNBLINDING AT THE COLLABORATION MEETING IN JUNE 2013 @ DUBNA

N. Becerici Schmidt (MPI Munich)

Rencontres de Blois 2014

 $0\nu\beta\beta \rightarrow GERDA \rightarrow Phase I data taking \rightarrow Background model \rightarrow$ **Unblinding** $\rightarrow Results$

UNBLINDING AT THE COLLABORATION MEETING IN JUNE 2013 @ DUBNA

Phys. Rev. Lett 111 (2013) 122503

N. Becerici Schmidt (MPI Munich)

Rencontres de Blois 2014

 $0\nu\beta\beta \rightarrow GERDA \rightarrow Phase I data taking \rightarrow Background model \rightarrow$ **Unblinding** $\rightarrow Results$

UNBLINDING AT THE COLLABORATION MEETING IN JUNE 2013 @ DUBNA

Phys. Rev. Lett 111 (2013) 122503

N. Becerici Schmidt (MPI Munich)

Rencontres de Blois 2014

Both Bayesian and Frequentist analyses performed for deriving $T_{1/2}$ limit

Maximum likelihood spectral fit

Fit window: 1930 – 2190 keV (minus 20 keV γ-ray line regions)

4 free parameters: 3 constant bkg terms

(for Golden, Silver, BEGe datasets) + 1 common $1/T_{1/2}$

Systematic uncertainties on the analysis parameters accounted for

```
Bayesian results:

Flat prior on 1/T_{1/2} in (0, 10^{-24}) yr<sup>-1</sup> range

Best fit N<sub>0v</sub> = 0 cts

N<sub>0v</sub> < 4.0 cts (90% C.I.)

T<sub>1/2</sub> > 1.9 × 10<sup>25</sup> yr (90% C.I.)

Median sensitivity for no signal (MC)

T<sub>1/2</sub> > 2.0 × 10<sup>25</sup> yr (90% credible interval)
```

Frequentist profile likelihood results:

```
Best fit N_{0v} = 0 cts
```

N_{0v} < 3.5 cts (90% C.L.)

```
T_{1/2} > 2.1 \times 10^{25} \text{ yr} (90\% \text{ C.L.})
```

```
Median sensitivity for no signal (MC)
T_{1/2} > 2.4 \times 10^{25} yr (90% C.L.)
```

Phys. Rev. Lett 111 (2013) 122503

Hypothesis test for the claimed 0vββ signal by Klapdor-Kleingrothaus *et al.* [Phys. Lett. B 586 (2004)198]

Bayesian result:

Prior on $1/T_{1/2}$ modeling KK-claim Gaussian with mean = $0.84 \cdot 10^{-25}$ yr ⁻¹ and standard deviation = $0.20 \cdot 10^{-25}$ yr ⁻¹

Bayes Factor: P(D|H1)/P(D|H0) = 0.02

→ Long standing claim disfavored!

Frequentist profile likelihood result:

p-value: $P(N_{0v} = 0|H1) = 0.01$

Phys. Rev. Lett 111 (2013) 122503

Combined ⁷⁶Ge experiments

<u>GERDA + IGEX + HdM</u> HdM: Eur. Phys. J. A 12 (2001) 147 IGEX: Phys. Rev. D 65 (2002) 092007, Phys. Rev. D 70 (2004) 078302

Frequentist profile likelihood result:

Best fit $N_{0\nu} = 0$ cts

 $T_{1/2} > 3.0 \times 10^{25} \text{ yr (90\% C.L.)}$

Hypothesis test: H0 = bkg only H1 = bkg + signal (KK-claim) Bayes Factor: P(D|H1)/P(D|H0) = 2 · 10⁻⁴

Phys. Rev. Lett 111 (2013) 122503

N. Becerici Schmidt (MPI Munich)

Rencontres de Blois 2014

SUMMARY OF PHASE-I

- Blind analysis & Comprehensive background model
- Blinding window $Q_{\beta\beta} \pm 5 \text{ keV} (\sigma_E \sim 0.1\% @Q_{\beta\beta} = 2039 \text{ keV})$ Expected background (2.5 ± 0.3) cts \leftrightarrow Observed 3 cts (0 cts in $Q_{\beta\beta} \pm 1\sigma_E$)
 - \rightarrow No evidence for signal!

```
GERDA Phase-I:

T_{1/2} > 2.1 \cdot 10^{25} yr at 90% C.L.

<sup>76</sup>Ge combined (GERDA+HdM+IGEX):

T_{1/2} > 3.0 \cdot 10^{25} yr at 90% C.L.
```

Long standing claim for ⁷⁶Ge $0\nu\beta\beta$ decay signal (T_{1/2} = 1.19 + 0.37 - 0.23 · 10²⁵ yr) excluded with high probability in a model-independent way.

OUTLOOK ON PHASE-II

Transition to Phase-II ongoing

- New BEGe detectors (20 kg):
 - Increased target mass (total ~35 kg)
 - Enhanced energy resolution and background suppression (due to PSD performance of BEGes)
- LAr instrumentation:
 - Background rejection through detection of coincident LAr scintillation light
- → BI at $Q_{\beta\beta} \le 10^{-3}$ cts/(kg keV yr)
- → An order of magnitude improvement on $T_{1/2}$ sensitivity in ~5 years

BACKUP SLIDES

^{enr}Ge semi-coaxial detectors, total exposure: 5 kg yr

Background sources:

No contribution at $Q_{\beta\beta}$ ³⁹Ar (Q_{β} = 565 keV), 2v $\beta\beta$, ⁴⁰K, ²²⁸Ac

$$\label{eq:contribution at Q_{\beta\beta}} \begin{split} & \overset{42}{}{\rm K} \ ({}^{42}{\rm Ar}) \\ & Q_{\beta} = 3.5 \ {\rm MeV} \\ & {\rm E_{v}} = 2.4 \ {\rm MeV} \end{split}$$

 $^{214}\text{Bi}~(^{238}\text{U chain})$ Q_β = 3.3 MeV, E_γ = 2.1, 2.2, 2.4 MeV

 208 Tl (232 Th chain) E_{γ} = 2.6 MeV

 α -induced surface events (isotopes in ²³⁸U chain)

```
^{60}\text{Co} (int. and ext.) Q_\beta = 2.8 MeV
```


PULSE SHAPE DISCRIMINATION METHODS AND CUTS FIXED PRIOR TO UNBLINDING

<u>Semi-coaxial detectors</u> Artificial neural network

 $0\nu\beta\beta$ acceptance = $(90^{+5}_{-9})\%$ bck @ Q_{ββ} acc. ~ 65%

 $2\nu\beta\beta$ acc. = (85±2)%

<u>BEGe detectors</u> Mono-parametric: A/E method

0νββ acceptance = $(92\pm2)%$ bck @ $Q_{ββ}$ acc. ≤ 20%

 $2\nu\beta\beta$ acc. = (91±5)%

Updated figure from Phys. Rev. Lett 111 (2013) 122503