26th Rencontres de Blois 20 May 2014

Phenomenology of light sterile vs

Antonio Palazzo MPI für Physik – Munich

Outline

Beyond three neutrino families Phenomenology of eV sterile vs From eV to sub-eV sterile neutrinos Conclusions

Beyond three neutrino families

Many extensions of the SM involve sterile neutrinos, i.e. singlets of the SM gauge group

 v_s 's have been investigated at several E scales:

- GUT, see-saw models of v mass, leptogenesis
- TeV, production at LHC and impact on EWPOs
- kev, dark matter candidates
- eV, anomalies in SBL oscillation experiments
 - sub-eV, θ_{13} reactors and solar neutrinos

"Light v_s"

Wide interest in the scientific community

arXiv:1204.5379v1 [hep-ph] 18 Apr 2012

Light Sterile Neutrinos: A White Paper

K. N. Abazajian^a, ¹ M. A. Acero, ² S. K. Agarwalla, ³ A. A. Aguilar-Arevalo, ² C. H. Albright, ^{4,5} S. Antusch,⁶ C. A. Argüelles,⁷ A. B. Balantekin,⁸ G. Barenboim^a,³ V. Barger,⁸ P. Bernardini,⁹ F. Bezrukov,¹⁰ O. E. Bjaelde,¹¹ S. A. Bogacz,¹² N. S. Bowden,¹³ A. Boyarsky,¹⁴ A. Bravar,¹⁵ D. Bravo Berguño,¹⁶ S. J. Brice,⁵ A. D. Bross,⁵ B. Caccianiga,¹⁷ F. Cavanna,^{18,19} E. J. Chun,²⁰ B. T. Cleveland,²¹ A. P. Collin,²² P. Coloma,¹⁶ J. M. Conrad,²³ M. Cribier,²² A. S. Cucoanes,²⁴ J. C. D'Olivo,² S. Das,²⁵ A. de Gouvêa,²⁶ A. V. Derbin,²⁷ R. Dharmapalan,²⁸ J. S. Diaz,²⁹ X. J. Ding,¹⁶ Z. Djurcic,³⁰ A. Donini,^{31,3} D. Duchesneau,³² H. Ejiri,³³ S. R. Elliott,³⁴ D. J. Ernst,³⁵ A. Esmaili,³⁶ J. J. Evans,^{37, 38} E. Fernandez-Martinez,³⁹ E. Figueroa-Feliciano,²³ B. T. Fleming^a,¹⁸ J. A. Formaggio^a,²³ D. Franco,⁴⁰ J. Gaffiot,²² R. Gandhi,⁴¹ Y. Gao,⁴² G. T. Garvey,³⁴ V. N. Gavrin,⁴³ P. Ghoshal,⁴¹ D. Gibin,⁴⁴ C. Giunti,⁴⁵ S. N. Gninenko,⁴³ V. V. Gorbachev,⁴³ D. S. Gorbunov,⁴³ R. Guenette,¹⁸ A. Guglielmi,⁴⁴ F. Halzen,^{46,8} J. Hamann,¹¹ S. Hannestad,¹¹ W. Haxton,^{47,48} K. M. Heeger,⁸ R. Henning,^{49,50} P. Hernandez,³ P. Huber^b, ¹⁶ W. Huelsnitz, ^{34,51} A. Ianni, ⁵² T. V. Ibragimova, ⁴³ Y. Karadzhov, ¹⁵ G. Karagiorgi, ⁵³ G. Keefer,¹³ Y. D. Kim,⁵⁴ J. Kopp^a,⁵ V. N. Kornoukhov,⁵⁵ A. Kusenko,^{56,57} P. Kyberd,⁵⁸ P. Langacker,⁵⁹ Th. Lasserre^a,^{22,40} M. Laveder,⁶⁰ A. Letourneau,²² D. Lhuillier,²² Y. F. Li,⁶¹ M. Lindner,⁶² J. M. Link^b,¹⁶ B. L. Littlejohn,⁸ P. Lombardi,¹⁷ K. Long,⁶³ J. Lopez-Pavon,⁶⁴ W. C. Louis^{a, 34} L. Ludhova,¹⁷ J. D. Lykken,⁵ P. A. N. Machado,^{65, 66} M. Maltoni,³¹ W. A. Mann,⁶⁷ D. Marfatia,⁶⁸ C. Mariani,^{53,16} V. A. Matveev,^{43,69} N. E. Mavromatos,^{70,39} A. Melchiorri,⁷¹ D. Meloni,⁷² O. Mena,³ G. Mention,²² A. Merle,⁷³ E. Meroni,¹⁷ M. Mezzetto,⁴⁴ G. B. Mills,³⁴ D. Minic,¹⁶ L. Miramonti,¹⁷ D. Mohapatra,¹⁶ R. N. Mohapatra,⁵¹ C. Montanari,⁷⁴ Y. Mori,⁷⁵ Th. A. Mueller,⁷⁶ H. P. Mumm,⁷⁷ V. Muratova,²⁷ A. E. Nelson,⁷⁸ J. S. Nico,⁷⁷ E. Noah,¹⁵ J. Nowak,⁷⁹ O. Yu. Smirnov,⁶⁹ M. Obolensky,⁴⁰ S. Pakvasa,⁸⁰ O. Palamara,^{18,52} M. Pallavicini,⁸¹ S. Pascoli,⁸² L. Patrizii,⁸³ Z. Pavlovic,³⁴ O. L. G. Peres,³⁶ H. Pessard,³² F. Pietropaolo,⁴⁴ M. L. Pitt,¹⁶ M. Popovic,⁵ J. Pradler,⁸⁴ G. Ranucci,¹⁷ H. Ray,⁸⁵ S. Razzaque,⁸⁶ B. Rebel,⁵ R. G. H. Robertson,^{87,78} W. Rodejohann^a,⁶² S. D. Rountree,¹⁶ C. Rubbia,^{39,52} O. Ruchayskiy,³⁹ P. R. Sala,¹⁷ K. Scholberg,⁸⁸ T. Schwetz^a,⁶² M. H. Shaevitz,⁵³ M. Shaposhnikov,⁸⁹ R. Shrock,⁹⁰ S. Simone,⁹¹ M. Skorokhvatov,⁹² M. Sorel,³ A. Sousa,⁹³ D. N. Spergel,⁹⁴ J. Spitz,²³ L. Stanco,⁴⁴ I. Stancu,²⁸ A. Suzuki,⁹⁵ T. Takeuchi,¹⁶ I. Tamborra,⁹⁶ J. Tang,^{97,98} G. Testera,⁸¹ X. C. Tian,⁹⁹ A. Tonazzo,⁴⁰ C. D. Tunnell,¹⁰⁰ R. G. Van de Water,³⁴ L. Verde,¹⁰¹ E. P. Veretenkin,⁴³ C. Vignoli,⁵² M. Vivier,²² R. B. Vogelaar,¹⁶ M. O. Wascko,⁶³ J. F. Wilkerson,^{49,102} W. Winter,⁹⁷ Y. Y. Y. Wong^a,²⁵ T. T. Yanagida,⁵⁷ O. Yasuda,¹⁰³ M. Yeh,¹⁰⁴ F. Yermia,²⁴ Z. W. Yokley,¹⁶ G. P. Zeller,⁵ L. Zhan,⁶¹ and H. Zhang⁶²

¹University of California, Irvine

²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

³Instituto de Fisica Corpuscular, CSIC and Universidad de Valencia

⁴Northern Illinois University

⁵Fermi National Accelerator Laboratory

⁶University of Basel

^aSection editor

^bEditor and corresponding author (pahuber@vt.edu and jmlink@vt.edu)

Introducing a light sterile neutrino

small mixing of active flavors with the 4th state

The reactor and gallium anomalies (unexplained v_e disappearance)

Mention et al. arXiv:1101:2755 [hep-ex]

SAGE coll., PRC 73 (2006) 045805

Warning: both are mere normalization issues The culprit may be in hidden systematics

Fitting the SBL ve anomalies

Mention et al., PRD 83 073006 (2011)

In a 2v framework:

$$P_{ee} \simeq 1 - \sin^2 2\theta_{new} \sin^2 \frac{\Delta m_{new}^2 L}{4E}$$

In a 3+1 scheme:

$$P_{ee} = 1 - 4 \sum_{j>k} U_{ej}^2 U_{ek}^2 \sin^2 \frac{\Delta m_{jk}^2 L}{4E}$$
$$\Delta m_{sol}^2 \ll \Delta m_{atm}^2 \ll \Delta m_{new}^2$$
$$\sin^2 \theta_{new} \simeq U_{e4}^2 = \sin^2 \theta_{14}$$

7

The SBL accelerator anomalies (unexplained v_e appearance in a v_μ beam)

8

No anomaly in v_{μ} disappearance

only upper bounds (till now)

Tension in all vs models

 $\sin^2 2\theta_{e\mu} \simeq \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \simeq 4|U_{e4}|^2 |U_{\mu4}|^2$

Giunti & Laveder

arXiv:1107.1452

10

What non-SBL exp tell us on vs?

A.P., Review for Mod. Phys. Lett. A 28, 1330004 (2013)

• Solar + LBL reactors:

$$\sin^2 \theta_{14} < 0.04 \quad (90\% \text{ C.L.})$$

Bound indep. of reactor fluxes (KamLAND only shape)

Combination reduces the indication to the ~ 20 level

From light to very light sterile vs

Light

 $\Delta m_{14}^2 \sim 1 \text{ eV}^2$

 $\Delta m_{14}^2 \in [10^{-3} - 10^{-1}] eV^2$

Motivations for investigating VLSv's

Theory does not provide info on v_s mass-mixing which should be investigated without prejudice

Cosmology presents anomalous features which can be easily explained by VLSV's (but not by eV vs)

For the first time new experiments, born for other purposes (to measure θ_{13}) can probe sub-eV masses

New trends in cosmological data

 $\Delta N_{eff} \sim 0.6$

Similar findings in:

Wyman et al. [1307.7715 hep-ph] Giunti et al. [1309.3192 astro-ph]

 $m_v \sim 0.4 \text{ eV}$

A VLSv provides both features

- Contribution to v mass in the sub-ev range

- Only partial thermalization (Neff < 1)

Hannestad et al 1204.5861

No need to resort to more exotic mechanisms such as big lepton asymmetry

self-interactions

Studying VLSvs with θ_{13} experiments

Double CHOOZ

RENO

Observed far/near deficit implies θ_{13} > 0

$$P_{ee} \simeq 1 - 4|U_{e3}|^2 (1 - |U_{e3}|^2) \sin^2 \frac{\Delta m_{13}^2 L}{4E}$$

$$4|U_{e3}|^2(1-|U_{e3}|^2) \equiv \sin^2 2\theta_{13}$$

Figure from Bezerra et al. Phys Lett. B 725 (2013) 271

4v formulae valid at reactors

Neglecting terms $\propto |U_{e3}|^2 |U_{e4}|^2$ or $\propto \Delta m_{sol}^2$ we have

$$P_{ee} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E_\nu}\right) - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{14}^2 L}{4E_\nu}\right)$$

Sizable effects expected both at near and far site

$$\frac{\Delta m_{14}^2 L}{4E_{\nu}} \simeq 1.267 \left(\frac{\Delta m_{14}^2}{10^{-2} \text{ eV}^2}\right) \left(\frac{L}{400 \text{ m}}\right) \left(\frac{4 \text{ MeV}}{E_{\nu}}\right)$$

Far/hear ratios expected to give info on VLSV's

Numerical examples

Figures from Esmaili et al., Phys. Rev. D 88, 073012 (2013)

Far/hear ratios are expected to give info on VLSvs

4-flavor analysis performed for free θ_{13}

A.P. JHEP 1310, 172 (2013) [1308.5880 hep-ph]

Each experiment excludes a different region Synergy inutheoglobal, combination

 ϑ_{14} free

Estimate of θ_{13} in a 4v framework

A.P. JHEP 1310, 172 (2013) [1308.5880 hep-ph]

3v estimate robust provided that $\Delta m_{14}^2 > 6 \times 10^{-3} \text{ eV}^2$ No lower bound for smaller $\Delta m_{14}^2 (\theta_{13} - \theta_{14} \text{ degeneracy})$ However, in this region lower bound by T2K

- Possible indications of eV sterile neutrinos
- Global interpretation problematic (app/dis tension)
- Hint from cosmology also is difficult to explain
- VLSv's with $\Delta m^2 \sim [10^{-3} 10^{-1}]$ eV ² offer an option for cosmo hints (dark rad, and hot-dark-matter)
- New information on eV/sub-eV vs indispensable

What if a v, were discovered?

First concrete extension of the SM; will need scrutiny Properties beyond $m \notin \theta$? Self interactions \notin with DM?

Subleading effets expected in osc. phenomenology. NMH & CPV sensitivities altered. New CPV phases.

Impact in cosmology (radiation and hot dark matter)

Impact in astrophysics (supernova explosion)

It will be natural to think that several v_s may exist and explain other observations: DM (keV), baryon asymmetry via leptogenesis and small v mass (GUT), etc...

Thank you for your attention!

Backup slides

Are systematics under control?

A.C. Hayes et al. arXiv:1309.4146 [nucl-th]

Systematics in reactor spectra may have been underestimated

Impact of a light sterile neutrino in *β*-decay

Kraus et al., arXiv:1105.1326

Formaggio & Barrett, arXiv:1105.1326

Impact of a light sterile in Ov2B-decay

$$m_{\beta\beta} = \left| \sum U_{ei}^2 m_i \right| = \left| c_{12}^2 c_{13}^2 c_{14}^2 m_1 + s_{12}^2 c_{13}^2 c_{14}^2 m_2 e^{i\alpha} + s_{13}^2 c_{14}^2 m_3 e^{i\beta} + s_{14}^2 m_4 e^{i\gamma} \right|$$

Barry, Rodejohann, Zhang, arXiv:1105.3911

What cosmology tells us?

Extra relativistic content ~ 2 sigma effect

"Dark radiation"

Warnings:

- AN_{eff} > 0 driven by tension in H₀ determination (CMB vs Astro
- $\Delta N_{eff} \in [0, 1]$ requires a mechanism hampering vs thermalization
- N_{eff} is not specific of sterile neutrinos

Role of reactor experiments in v, searches

Reactor experiments are sensitive to the mixing of the sterile v with the electron v $(|U_{e4}|^2 = \sin^2\theta_{14})$

Existing constraints Limited to Δm_{14}^2 > few x 10⁻² eV²

> Obtained with baselines < 100 m

New experiments with longer baselines are now operating and make it possible to probe smaller values of Δm_{14}^2

3-flavor analysis ($\theta_{14}=0$)

A.P. JHEP 1310, 172 (2013) [1308.5880 hep-ph]

Excellent agreement with the three collaborations Combination gives θ_{13} at ~10 sigma level $sin^2\theta_{13} = 0.023 + / - 0.002$

4-flavor analysis performed at fixed θ_{13}

A.P. JHEP 1310, 172 (2013) [1308.5880 hep-ph]

All 3 experiments exclude a lobe around the atm. splitting (far site sees the osc. phase, at near site negligible effects) All 3 experiments exclude a second lobe around 10^{-2} eV² (at far site averaged osc., near site sees oscillation phase)