$26^{\text {th }}$ Renconties de Blois 2014: May $19-23$

Recent results on quarkonium(-like) states at B-factories

Ruslan Chistov (ITEP and MEPhI, Moscow) Representing the Belle Collaboration

OUTLINE:

$X(3872), Z^{+}$
$X(4140 / 4270) \rightarrow J / \psi \phi$ $r(4 / 5 S) \rightarrow h_{b} \eta$

Predictions for conventional charmonia

$\eta_{\mathrm{c}}(\mathbf{1 S}) \equiv \mathbf{1 1}^{\mathbf{1} \mathbf{S}_{\mathbf{0}}}$
$\mathbf{J} / \psi \equiv \mathbf{1}^{\mathbf{3}} \mathbf{S}_{\mathbf{1}}$
$\chi_{\mathrm{cJ}}(\mathbf{1 P}) \equiv \mathbf{1}^{\mathbf{3}} \mathbf{P}_{\mathbf{J}}$

Theory described well the observed spectrum of cc states \rightarrow
The charmonium system is ideal place to search for exotic states $=$ deviations from conventional charmonium spectroscopy.
Until the B-factories -
no evidence for such deviations

Luminosity at B factories

$$
>1 \mathbf{a b}^{-1}
$$

On resonance:

$$
Y(5 \mathrm{~S}): 121 \mathrm{fb}^{-1}
$$

$$
Y(4 \mathrm{~S}): 711 \mathrm{fb}^{-1}
$$

$$
Y(3 S): 3 \mathrm{fb}^{-1}
$$

$$
Y(2 \mathrm{~S}): 24 \mathrm{fb}^{-1}
$$

$$
Y(1 \mathrm{~S}): 6 \mathrm{fb}^{-1}
$$

Off reson./scan

$$
\sim 100 \mathrm{fb}^{-1}
$$

$$
\sim 550 \mathrm{fb}^{-1}
$$

On resonance:
$Y(4 S): 433 \mathrm{fb}^{-1}$
$Y(3 S): 30 \mathrm{fb}^{-1}$
$Y(2 \mathrm{~S}): 14 \mathrm{fb}^{-1}$
Off resonance:
$\sim 54 \mathrm{fb}^{-1}$

In sum $\mathcal{L}>1552 \mathrm{fb}^{-1}$

For 9 years the B-factories have observed a number of states that do not admit a conventional quarkonium interpretation.

These states could be made of more than $\mathbf{2}$ quarks. So, unworried heavy quarkonium picture is broken!

New cc̄-like states

A number of

 unexpected exotic states above $\mathrm{DD}^{(*)}$ thresholds that do not fit into available c̄ slots were found| State | M, MeV | Γ, MeV | $J^{P C}$ | Process |
| :---: | :---: | :---: | :---: | :---: |
| X (3872) | 3871.52 ± 0.20 | $\begin{gathered} 1.3 \pm 0.6 \\ (<2.2) \end{gathered}$ | $1^{++} / 2^{-+}$ | $B \rightarrow K\left(\pi^{+} \pi^{-} J / \psi\right)$ |
| | | | | $p \bar{p} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)+\ldots$ |
| | | | | $B \rightarrow K(\omega J / \psi)$ |
| | | | | $B \rightarrow K\left(D^{* 0} D^{0}\right)$ |
| | | | | $B \rightarrow K(\gamma J / \psi)$ |
| | | | | $B \rightarrow K(\gamma \psi(2 S))$ |
| $X(3915)$ | 3915.6 ± 3.1 | 28 ± 10 | $0 / 2^{?+}$ | $B \rightarrow K(\omega J / \psi)$ |
| | | | | $\gamma \gamma \rightarrow(\omega J / \psi)$ |
| $X(3940)$ | 3942_{-8}^{+9} | 37_{-17}^{+27} | ??+ | $e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right)$ |
| | | | | $e^{+} e^{-} \rightarrow J / \psi(\ldots)$ |
| $Y(4008)$ | $4008{ }_{-19}^{+121}$ | 226 ± 97 | 1^{--} | $e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$ |
| $Z_{1}(4050)^{+}$ | 4051_{-43}^{+24} | 82_{-55}^{+51} | ? | $B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$ |
| $Y(4140)$ | 4143.4 ± 3.0 | 15_{-7}^{+11} | ? ? + | $B \rightarrow K(\phi J / \psi)$ |
| $X(4160)$ | 4156_{-25}^{+29} | 139_{-65}^{+113} | ? ${ }^{+}$ | $e^{+} e^{-} \rightarrow J / \psi\left(D \bar{D}^{*}\right)$ |
| $Z_{2}(4250)^{+}$ | $4248{ }_{-45}^{+185}$ | 177_{-72}^{+321} | ? | $B \rightarrow K\left(\pi^{+} \chi_{c 1}(1 P)\right)$ |
| $Y(4260)$ | 4263 ± 5 | 108 ± 14 | 1^{--} | $e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$ |
| | | | | $e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} J / \psi\right)$ |
| | | | | $e^{+} e^{-} \rightarrow\left(\pi^{0} \pi^{0} J / \psi\right)$ |
| $Y(4360)$ | 4353 ± 11 | 96 ± 42 | 1^{--} | $e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi^{\prime}\right)$ |
| $Z(4430)^{+} .$. | 4443_{-18}^{+24} | 107_{-71}^{+113} | ? | $B \rightarrow K\left(\pi^{+} \psi(2 S)\right)$ |
| $X(4630)$ | 4634_{-11}^{+9} | 92_{-32}^{+41} | 1^{--} | $e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$ |
| $Y(4660)$ | 4664 ± 12 | 48 ± 15 | 1^{--} | $e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} \psi(2 S)\right)$ |

X(3872): a mixture of

> 'peripheral' part dominant at large distance

molecule

'core' part localized at short distance, e.g. $2^{3} P_{1}+$ others'..

$M_{X}=3871.85 \pm 0.27 \pm 0.19 \mathrm{MeV}$ Belle: PRD 84052004

> X(3872) was confirmed by all players in heavy flavours
charmonium
Decays into DD* And J/ $\psi \rho^{0}$, J/ $\psi \omega$ Isospin mixed pionic transitions

Searches for new X decay modes are needed to explore in detail its properties and

Recent results on X(3872) decays: Search for $\mathbf{X (3 8 7 2)} \rightarrow \chi_{\mathrm{c} 1} \pi^{+} \pi^{-}$in $\mathbf{B}^{+} \rightarrow \chi_{\mathrm{c} 1} \pi^{+} \pi^{-} \mathbf{K}^{+}$

\rightarrow no evidence for either $X(3872)$ nor $X_{a}{ }^{\prime}$

Observation of $B^{ \pm} \rightarrow \chi_{c 1} \pi^{+} \pi^{-} K^{ \pm}$(1597 ± 76 events).
Search for $X(3872) / \chi_{c 1}(2 P)$: no resonances found. $\mathcal{B}\left(B \rightarrow \chi_{c 1} \pi^{+} \pi^{-} K\right)=(3.94 \pm 0.19 \pm 0.30) \times 10^{-4}$. Preliminary
arxiv: 1101.6058 (2011) The $X(4140), X(4270) \rightarrow J / \psi \phi$ story

CDF reported the study of the decay mode $\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \phi \mathrm{K}^{+}$

CMS confirmed two resonances

DO published evidence for these resonances

Search for $X(4140)$ in $B^{+} \rightarrow J / \psi \phi K^{+}$decays at BaBar

Fit fractions with the assumption of two resonances

$$
\begin{aligned}
& -f(4 \mid 40)=(7.3 \pm 2.5 \pm 3.8) \% ; \text { Upper Limit }(90 \% \mathrm{CL})=12.1 \% \\
& -\mathrm{f}(4270)=(7.7 \pm 3.7 \pm 5.2) \% ; \text { Upper Limit }(90 \% \mathrm{CL})=16.4 \%
\end{aligned}
$$

No clear conclusion from BaBar on these resonances

- Lack of statistics
- Need a full Dalitz plot analysis

Charged Charmonium-like States

 $Z(4430)^{+}$, Z(4050)+,Z(4250)+ at Belle
$\mathrm{B}^{0} \rightarrow \pi^{+} \psi(2 \mathrm{~S}) \mathrm{K}$

Total significance: 6.5σ and
$\mathrm{B}^{0} \rightarrow \pi+\chi_{\mathrm{c} 1} \mathrm{~K}-$

$>5 \sigma$ for each Z^{+}

These states have no chance to be a pure cc (unlike neutral XYZ)

Belle updated Z(4430) ${ }^{+} \rightarrow \psi(2 \mathrm{~S}) \pi^{+}$analysis

Phys.Rev. D88 074026 (2013)

$$
\begin{aligned}
M & =4485_{-22-11}^{+22+28} \mathrm{MeV} / \mathrm{c}^{2} \\
\Gamma & =200_{-46-35}^{+41+26} \mathrm{MeV} .
\end{aligned}
$$

Preferred J^{P} hypothesis: 1^{+}. Exclusion levels ($0^{-}, 1^{-}, 2^{-}$ and 2^{+}hypotheses): 3.4σ, $3.7 \sigma, 4.7 \sigma$ and 5.1σ.

4-dimensional amplitude analysis of $B^{0} \rightarrow \psi(2 S) K^{+} \pi^{-}$

J^{P}	0^{-}	1^{-}
Mass, MeV $/ c^{2}$	4479 ± 16	4477 ± 4
Width, MeV	110 ± 50	22 ± 14
Significance	4.5σ	3.6σ

1^{+}	2^{-}	2^{+}
4485 ± 20	4478 ± 22	4384 ± 19
200 ± 40	83 ± 25	52 ± 28
6.4σ	2.2σ	1.8σ

Amplitude analysis of $\mathbf{B} \rightarrow \mathrm{J} / \psi \pi \mathrm{K}$

4 D amplitude analysis (similar to $\mathrm{Z}(4430)^{+}$)

NEW

Search for $\mathbf{Z}(4430)^{+}$and another additional \mathbf{Z}^{+}decaying into $J / \psi \pi^{+}$
New Z_{c}^{+}is found $\left(J^{P}=1^{+}\right)\left[Z_{c}(4200)^{+}, 7.2 \sigma\right.$ with syst. error $]$

$$
\begin{gathered}
M=4196_{-29-6}^{+31+17} \mathrm{MeV} / \mathrm{c}^{2}, \Gamma=370_{-70-85}^{+70+70} \mathrm{MeV} . \\
\mathbf{J P}^{\mathbf{P}}=\mathbf{1}^{+}
\end{gathered}
$$

Exclusion levels $\left(J^{P}=0^{-}, 1^{-}, 2^{-}, 2^{+}\right): 6.7 \sigma, 7.7 \sigma, 5.2 \sigma, 7.6 \sigma$.

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B}^{0} \rightarrow Z_{C}(4430)^{+} K^{-}\right) \times \mathcal{B}\left(Z_{C}(4430)^{+} \rightarrow J / \psi \pi^{+}\right)=\left(5.4_{-1.0-0.9}^{+4.0+1.1}\right) \times 10^{-6} \\
& \mathcal{B}\left(\bar{B}^{0} \rightarrow Z_{C}(4200)^{+} K^{-}\right) \times \mathcal{B}\left(Z_{C}(4200)^{+} \rightarrow J / \psi \pi^{+}\right)=\left(2.2_{-0.5-0.6}^{+0.7+1.1}\right) \times 10^{-5}
\end{aligned}
$$

$\frac{\mathcal{B}\left(Z_{c}(4430)^{+} \rightarrow \psi(2 S) \pi^{+}\right)}{\mathcal{B}\left(Z_{C}(4430)^{+} \rightarrow J / \psi \pi^{+}\right)} \sim 10$
It could be a sign of a complex structure of $Z(4430)^{+}$wavefunction

Since 2007 Belle remained confident that their analysis is sound and the peaks in $\pi^{+} \psi^{\prime}$ and $\pi^{+} \chi_{c 1}$ masses are not due to the reflections from the dynamics in $K \pi$ system.

Last year new charged charmonium-like state, $\mathbf{Z}(3900)^{+} \rightarrow \mathbf{J} / \psi \pi^{+}$, was observed by BES III and Belle. Very recently the first charmonium-like charged state, $Z(4430)^{+} \rightarrow \psi(2 S) \pi^{+}$, discovered by Belle in 2007 was finally confirmed by LHCb

	LHCb	Belle
$M(Z)[\mathrm{MeV}]$	$4475 \pm 7_{-25}^{+15}$	$4485 \pm 22_{-11}^{+28}$
$\Gamma(Z)[\mathrm{MeV}]$	$172 \pm 13_{-34}^{+37}$	200_{-46-35}^{+41+26}
$f_{Z}[\%]$	$5.9 \pm 0.9_{-3.3}^{+1.5}$	$10.3_{-3.5-2.3}^{+3.0+4.3}$
$f_{Z}^{I}[\%]$ (with interterences) Significance	$16.7 \pm 1.6_{-5.2}^{+2.6}$	
	$>13.9 \sigma$	$>5.2 \sigma$

Interpretation of \mathbf{Z}^{+}

Charged, $\mathrm{I}=1$
Cannot be a conventional charmonium or hybrid state

Should contain light quarks in addition to cc

A variety of interpretations (not a complete list...):

- D*D ${ }_{1}$ molecular state
(X. Liu and Y.R. Liu, 0711.0494);
- radially excited tetraquark (L.Maiani, A.D.Polosa, V.Riquer, 0708.3997);
- hadro-charmonium
(S.Dubinskiy,M.B.Voloshin,0803.2224)

η transitions in bottomonia

The transitions between Upsilons with η emission are suppressed in comparison with $\pi \pi$ in QCD multipole expansion models. $S \rightarrow S \eta$ requires spin flip (E1 M1 transition)

CLEO

BaBar
Belle
Ok
with

$$
\begin{aligned}
& \Upsilon(2 S) \rightarrow \Upsilon(1 S) \eta \quad 2.1^{+0.7_{-0.6} \pm 0.3} \quad 2.39 \pm 0.31 \pm 0.14 \quad 3.57 \pm 0.25 \pm 0.21 \\
& \Upsilon(3 S) \rightarrow \Upsilon(1 S) \eta
\end{aligned}
$$

theory

$$
\Upsilon(4 S) \rightarrow \Upsilon(1 S) \eta
$$

$$
1.96 \pm 0.06 \pm 0.09
$$

$\Upsilon(5 S) \rightarrow \Upsilon(1 S) \eta$	2-3 orders of magnitude higher than	$7.3 \pm 1.6 \pm 0.8$
$\Upsilon(5 S) \rightarrow \Upsilon(2 S) \eta$	theoretical. expectations	$38 \pm 4 \pm 5$

$\Upsilon(5 S) \rightarrow \Upsilon(1 S) \eta \quad$| 2-3 orders of magnitude |
| :--- |
| higher than |

$\Upsilon(5 S) \rightarrow \Upsilon(2 S) \eta \quad$ theoretical. expectations
coupled channels effects (hadronic loops) account for

But what with $\Upsilon(4 / 5 S) \rightarrow h_{b} \eta$? (never observed so far)
$\Upsilon(4 S) \rightarrow h_{b} \eta$ is expected to be as large as 10-3 [PRL 105 (2010) 162001]

$$
\operatorname{Br}\left(r(4 S) \rightarrow h_{b} \eta\right)=(1.83 \pm 0.16 \pm 0.17) \times 10^{-3}
$$

Then additional photon is reconstructed $\Delta M M=M M(\gamma \eta)-M M(\eta)=M\left(\eta_{b}\right)-M\left(h_{b}\right)$

γ reconstructed

$$
\begin{gathered}
M\left(\eta_{b}\right)=(9405.3 \pm 1.3 \pm 3.0) \mathrm{MeV} \\
\Delta M_{H F}(1 S)=M(\Upsilon(1 S))-M\left(\eta_{b}(1 S)\right)=(55.0 \pm 1.3 \pm 3.2) \mathrm{MeV}
\end{gathered}
$$

In a good agreement with the Belle measurement from $\Upsilon(5 S) \rightarrow \pi^{+} \pi^{-} h_{b}\left(\rightarrow \gamma \eta_{b}\right)$ and LQCD but somewhat lower than BaBar and CLEO results from $\Upsilon(2 / 3 S) \rightarrow \gamma \eta_{b}$
$\operatorname{Br}\left(\mathrm{h}_{\mathrm{b}} \rightarrow \gamma \eta_{\mathrm{b}}\right)=\left(52^{+11}{ }_{-10} \pm 4\right) \%$ (48 ± 8)\% -previous Belle result

The same analysis in $\Upsilon(5 S)$ data: New

$B F[Y(5 S) \rightarrow \eta Y(1 D)]=(2.8 \pm 0.7 \pm 0.4) \times 10^{-3}$
\rightarrow First evidence of sinale meson transition to $Y(1 D)$
$B F[Y(5 S) \rightarrow \eta Y(2 S)]=(2.1 \pm 0.7 \pm 0.3) \times 10^{-3}$
$\mathrm{BF}[\mathrm{Y}(5 \mathrm{~S}) \rightarrow \eta \mathrm{hb}(1 \mathrm{P})]=<3.3 \times 10^{-3} \quad(90 \% \mathrm{CL})$ $B F[Y(5 S) \rightarrow \eta \mathrm{hb}(2 \mathrm{P})]=<3.7 \times 10^{-3} \quad(90 \% \mathrm{CL}) \int$

Unexpected behavior in comparison with $\Upsilon(4 S)$

Effects that violate heavy spin symmetry may be important !

Summary

- Study of X(3872) continues, Belle searched for $\chi_{\mathrm{c} 1} \pi^{+} \pi^{-}$mode;
- BaBar searched for $\mathbf{X}(4140) \rightarrow \mathrm{J} / \psi \phi ;$
- NEW RESULTS on the first charged Z, $\mathrm{Z}(4430)^{+} \rightarrow \psi(2 S) \pi^{+}$and $\mathrm{J} / \psi \pi^{+}$from Belle;
- New $\mathbf{Z}(4200)^{+} \rightarrow \mathrm{J} / \psi \pi^{+}$was found at Belle;
- New observations in bottomonia decays: η transitions in $\Upsilon(4 S)$ and $\Upsilon(5 S)$ at Belle.

Current picture of quarkonium-like (三exotic) states is rather scattered.

Today there is no unique theoretical model which coherently describes all experimental data.
X, Y, Z states remain a mystery, especially charged Z;
new efforts are needed to understand new states

Contribution from high-statistics measurements is important:
LHC , BES III and Belle II.

