Measurements of heavy flavor properties at ATLAS and CMS

Ilse Krätschmer* (HEPHY Vienna)

on behalf of the CMS and ATLAS collaborations Blois 2014: 26th Recontres de Blois on "Particle Physics and Cosmology" 18 - 23 May 2014

* supported by Austrian Science Fund (FWF): P24167

Outline

- ATLAS and CMS have a rich program in heavy flavor physics
- Heavy flavor production was already covered in Konstantin Toms' talk
- I will concentrate on a few recent topics:
 - Measurement of $lpha_{
 m b}$ in $\Lambda^0_{
 m b} o {
 m J}/\psi \Lambda_0$
 - $B_c^{\pm} \to J/\psi \pi^{\pm}$ and $B_c^{\pm} \to J/\psi \pi^{\pm} \pi^{\pm} \pi^{\mp}$
 - Quarkonium polarization

$\alpha_{\rm b} \ln \Lambda_{\rm b}^0 \to {\rm J}/\psi \Lambda_0$

- Parity violation in the hadronic sector depends on the constituents of the hadron because of the presence of strongly bound spectator quarks
- Measurement of the parity-violating asymmetry parameter α_b provides a test for several theoretical models:
 - Perturbative quantum chromodynamics (pQCD): $\alpha_{\rm b}$ = -0.17 to -0.14 (PRD 65, 074030 (2002))
 - Heavy quark effective theory (HQET): $\alpha_{\rm b}$ = 0.78 (PLB 614, 165 (2005))
- LHCb result compatible with pQCD calculation: $\alpha_{\rm b}$ = 0.05 ± 0.17 (stat.) ± 0.07 (syst.) (PLB 724 (2013), 27)
- ATLAS recently performed an independent measurement

$\Lambda_{\rm b}^0 \to J/\psi \Lambda_0$

• Decay angles $\Omega = \{\theta, \phi, \theta_1, \phi_1, \theta_2, \phi_2\}$

Λ helicity frame

- Assume CP conservation
- Combination of Λ^{0}_{b} and $\bar{\Lambda}^{0}_{b}$ baryons

Details in arXiv:1404.1071

Measurement of $\alpha_{ m b}$ in $\Lambda^0_{ m b} ightarrow { m J}/\psi \Lambda_0$

- Parameters extracted in a leastsquares fit to the distributions of decay angles
- Parity-violating asymmetry parameter

 $\alpha_{\rm b} = 0.30 \pm 0.16 (\text{stat.}) \pm 0.06 (\text{syst.})$

- Consistent with measurements from LHCb
- Inconsistent with pQCD and HQET at a level of 2.6 and 2.8 standard deviations
- Helicity amplitudes $A(\lambda_{\Lambda}, \lambda_{J/\psi})$

$$\begin{aligned} A(1/2,0) &\equiv |a_{+}| = 0.17^{+0.12}_{-0.17}(\text{stat.}) \pm 0.09(\text{syst.}) \\ A(-1/2,0) &\equiv |a_{-}| = 0.59^{+0.06}_{-0.07}(\text{stat.}) \pm 0.03(\text{syst.}) \\ A(-1/2,-1) &\equiv |b_{+}| = 0.79^{+0.04}_{-0.05}(\text{stat.}) \pm 0.02(\text{syst.}) \\ A(1/2,1) &\equiv |b_{-}| = 0.08^{+0.13}_{-0.08}(\text{stat.}) \pm 0.06(\text{syst.}) \end{aligned}$$

- First seen at CDF through the semileptonic decay ${
 m B}^{\pm}_{
 m c}
 ightarrow {
 m J}/\psi {
 m l}^+
 u$
- Ground state of the bc (bc) system
- Unique in that any of its quarks can decay weakly, leaving the other as a spectator
- Offers possibility to study the heavy quark dynamics that is inaccessible through the investigations on the bb and cc quarkonia

$B_c^{\pm} \to J/\psi \pi^{\pm}$

- ATLAS observed B_c^{\pm} mesons through their decay to $J/\psi\pi^{\pm}$ for p_T > 15 GeV
- The yield is extracted using an unbinned maximum likelihood fit to the mass distribution

yield = 82 ± 17 (stat.)events m(B_c[±]) = 6282 ± 7 (stat.)MeV

• Consistent with PDG average: $m(B_c^{\pm}) = 6277 \pm 6 \text{ MeV}$

$$B_c^{\pm} \rightarrow J/\psi \pi^{\pm}$$
 and $B_c^{\pm} \rightarrow J/\psi \pi^{\pm} \pi^{\pm} \pi^{\mp}$

• CMS studied the $B_c^{\pm} \rightarrow J/\psi \pi^{\pm}$ and $J/\psi \pi^{\pm} \pi^{\pm} \pi^{\mp}$ decay modes for $p_T > 15$ GeV and |y| < 1.6

$$\begin{split} &\frac{\sigma(\mathbf{B}_{\mathrm{c}}^{\pm})\times\mathrm{Br}(\mathbf{B}_{\mathrm{c}}^{\pm}\to \mathbf{J}/\psi\pi^{\pm})}{\sigma(\mathbf{B}^{\pm})\times\mathrm{Br}(\mathbf{B}^{\pm}\to\mathbf{J}/\psi\mathbf{K}^{\pm})} = \\ & (0.48\pm0.05~(\mathrm{stat.})~\pm~0.04~(\mathrm{syst.}) \\ & \stackrel{+0.05}{_{-0.03}}(\tau_{\mathbf{B}_{\mathrm{c}}}))\times10^{-2} \end{split}$$

$$\frac{\frac{Br(B_{c}^{\pm} \to J/\psi \pi^{\pm} \pi^{\pm} \pi^{\mp})}{Br(B_{c}^{\pm} \to J/\psi \pi^{\pm})}}{2.43 \pm 0.76 (\text{stat.})^{+0.46}_{-0.44} (\text{syst.})}$$

 Branching fraction ratio in good agreement with LHCb result:
 2.41 ± 0.30 (stat.) ± 0.33 (syst.) (PRL 109 (2012), 232001)

Details in CMS-PAS-BPH-12-011

Quarkonium polarization

- Long standing puzzle: No theoretical model has explained experimental measurements of quarkonium polarization
- Pre-LHC measurements showed inconsistencies in the determination of the polarization

• Polarization is measured through the average angular decay distribution - for vector particles most generally written as

$$W(\cos\vartheta,\varphi|\vec{\lambda}) = \frac{3/(4\pi)}{(3+\lambda_{\vartheta})}(1+\lambda_{\vartheta}\cos^2\vartheta+\lambda_{\varphi}\sin^2\vartheta\cos2\varphi+\lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi)$$

where $\lambda_{\vartheta},\,\lambda_{\phi},\,\lambda_{\vartheta\phi}$ are the polarization parameters

- CMS measured λ_{ϑ} , λ_{φ} , $\lambda_{\vartheta\varphi}$ and the frame invariant parameter $\tilde{\lambda} = (\lambda_{\vartheta} + 3\lambda_{\varphi})/(1 - \lambda_{\varphi})$ for J/ ψ , ψ (2S), Y(1S), Y(2S) and Y(3S) mesons decaying to $\mu^{+}\mu^{-}$ three different reference frames:
 - center-of-mass helicity HX (polar axis z_{HX}
 ≈ direction of quarkonium momentum)
 - Collins-Soper CS (z_{CS} ≈ direction of relative velocity of colliding particles)
 - perpendicular helicity PX ($z_{PX} \perp z_{CS}$)

Details in PRL 110 (2013), 081802 and PLB 727 (2013), 381

Frame Invariant Parameter $\tilde{\lambda}$

Good agreement between the $\tilde{\lambda}$ parameters in the three reference frames shows that the results are consistent

50

CS ۰НХ

♦PX

|v| < 0.6

40

$\Upsilon(nS)$ Polarization in the HX Frame, |y| < 0.6

Prompt $\psi(nS)$ Polarization in the HX Frame

- ψ(2S) is not affected by feeddown decays from higher states
- No sign of strong polarization

NLO NRQCD Comparison: Y(nS)

- Theory calculation accounts for feeddown contributions to $\Upsilon(1S)$ and $\Upsilon(2S)$ states
- Prediction for $\Upsilon(3S)$ may change when including feed-down from $\chi_b(3P)$ states
- Color octet matrix elements are fit to hadroproduction data only, including CMS Y(nS) polarization results

NLO NRQCD Comparison: ψ(nS)

- Calculations use a global fit of color octet matrix elements to photo- as well as hadroproduction data, excluding polarization results
- NLO NRQCD calculations fail to describe CMS results
- Theory predictions only consider directly produced J/ψ 's
- ψ(2S) result can be directly compared to theory since it has no feed-down contribution

Summary

- ATLAS and CMS have a rich program in heavy flavor physics
- Topics shown today:
 - Measurement of α_b in $\Lambda_b^0 \to J/\psi \Lambda_0$ inconsistent with pQCD and HQET at a level of 2.6 and 2.8 standard deviations
 - $B_c^{\pm} \to J/\psi \pi^{\pm}$ and $B_c^{\pm} \to J/\psi \pi^{\pm} \pi^{\pm} \pi^{\mp}$ modes observed
 - Quarkonium polarization measurements in disagreement with NLO NRQCD calculations
- More results are expected to come in the near future

ATLAS Detector

CMS Detector

$\alpha_{\rm b} \operatorname{in} \Lambda_{\rm b}^0 \to \mathrm{J}/\psi \Lambda_0$

Full angular probability density function of the decay angles

$$w(\Omega, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_\Lambda) F_i(\Omega)$$

 Ω : decay angles

 \vec{A} : helicity amplitudes

 α_Λ : decay asymmetry parameter

P: polarization of Λ_b^0

$\alpha_{\rm b} \ln \Lambda_{\rm b}^0 \to {\rm J}/\psi \Lambda_0$

i	f_{1i}	f_{2i}	
0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	Р	$\cos \theta$
2	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	α_{Λ}	$\cos \theta_1$
3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\cos\theta\cos\theta_1$
4	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$
5	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	P	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta$
6	$-a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta_1$
7	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - \frac{1}{2}b_{+}b_{+}^{*} - \frac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta\cos\theta_1$
8	$-3Re(a_+a^*)$	$P \alpha_{\Lambda}$	$\frac{1}{\sin\theta\sin\theta_1\sin^2\theta_2\cos\varphi_1}$
9	$3Im(a_+a^*)$	$P \alpha_{\Lambda}$	$\sin\theta\sin\theta_1\sin^2\theta_2\sin\varphi_1$
10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta \sin\theta_1 \sin^2\theta_2 \cos(\varphi_1 + 2\varphi_2)$
11	$\frac{3}{2}Im(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta \sin\theta_1 \sin^2\theta_2 \sin(\varphi_1 + 2\varphi_2)$
12	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\varphi_2$
13	$\frac{3}{\sqrt{2}}Im(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P\alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\varphi_2$
14	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\varphi_1+\varphi_2)$
15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P\alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\varphi_1+\varphi_2)$
16	$\frac{3}{\sqrt{2}}Re(a_b_+^* - b_a_+^*)$	Р	$\sin\theta\sin\theta_2\cos\theta_2\cos\varphi_2$
17	$-\frac{\sqrt{3}}{\sqrt{2}}Im(a_{b_{+}}^{*}-b_{a_{+}}^{*})$	Р	$\sin\theta\sin\theta_2\cos\theta_2\sin\varphi_2$
18	$\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1 \sin\theta_2 \cos\theta_2 \cos(\varphi_1 + \varphi_2)$
19	$-\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1 \sin\theta_2 \cos\theta_2 \sin(\varphi_1 + \varphi_2)$

$$\alpha_{\rm b} \operatorname{in} \Lambda_{\rm b}^0 \to \mathrm{J}/\psi \Lambda_0$$

Fit model parametrization

$$\begin{aligned} \alpha_{\rm b} &= |{\bf a}_+|^2 - |{\bf a}_-|^2 + |{\bf b}_+|^2 - |{\bf b}_-|^2 \\ k_+ &= \frac{|a_+|}{\sqrt{|a_+|^2 + |b_+|^2}} \\ k_- &= \frac{|b_-|}{\sqrt{|a_-|^2 + |b_-|^2}} \\ \Delta_+ &= \rho_+ - w_+ \\ \Delta_- &= \rho_- - w_- \end{aligned}$$

a,b: helicity amplitudes

 ρ , w: phases of helicity amplitudes

Quarkonium polarization

Definition of the PPD

$$\mathcal{P}(\vec{\lambda}) \quad \propto \quad \prod_{i} \frac{1}{\mathcal{N}(\vec{\lambda})} \quad W(\cos \theta^{(i)}, \phi^{(i)} \mid \vec{\lambda}) \quad \varepsilon(p_1^{\vec{(i)}} p_2^{\vec{(i)}})$$

 $\mathcal{N}\text{:}$ normalization

- W: general angular distribution
- ϵ : dimuon efficiency as a function of the muon momenta

Y(nS) Polarization in the HX Frame, 0.6 < |y| < 1.2

20 May 2014

ψ(1S): Comparison to NLO NRQCD

Ilse Krätschmer (HEPHY Vienna)

ψ(2S): Comparison to NLO NRQCD

20 May 2014

Ilse Krätschmer (HEPHY Vienna)