

Latest results in rare decays at LHCb

M. Kreps on behalf of the LHCb Collaboration

Physics Department

www2.warwick.ac.uk

Introduction

- In the SM, $b \rightarrow s$ FCNC decays
- SM BF of the order of 10^{-6}
- With angular analysis offers variety of observables
- Allows to test some underlying details of the NP
- Form factors make prediction of some observables less precise
- But many observables are free of form factor uncertainties
- Results shown today use $3~{\rm fb}^{-1}$ of data

Different q^2 region sensitive to different contributions From S. Jäger at Workshop on $b \rightarrow sll$ processes, 1-3 April 2014

Past excitement

THE UNIVERSITY OF

- Already existing measurements of many observables with 1 fb⁻¹ of 2011 data
- Mostly consistent with SM
- Some discrepancies exists
 - Isospin asymmetry in $B \to K \mu^+ \mu^-$
 - One of the angular observables (P_5') in $B^0 o K^{*0} \mu^+ \mu^-$
- Systematically update with 3 fb^{-1} of 2011+2012 data

Differential BF

WARWICK

Isospin asymmetry

- In SM expect A_I close to zero
- Test simple hypothesis of uniform A_I
- $B \rightarrow K^* \mu \mu$ p-value of 80%
- $B \to K \mu \mu$ p-value of 11% (1.5 σ)

THE UNIVERSITY OF

Angular analysis

- Start updates with $B \to K \mu^+ \mu^-$
- Angular distribution for B^+

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_l} = \frac{3}{4}(1-F_H)(1-\cos^2\theta_l) + \frac{1}{2}F_H + A_{FB}\cos\theta_l$$

• Positive in boundaries $0 \le F_H \le 3$ and $|A_{FB}| \le F_H/2$ • As B^0 is not self-tagging, A_{FB} not accessible

$$\frac{1}{\Gamma} \frac{d\Gamma}{d|\cos\theta_l|} = \frac{3}{2} (1 - F_H)(1 - \cos^2\theta_l) + F_H$$

Different q^2 region sensitive to different contributions From S. Jäger at Workshop on $b \rightarrow sll$ processes, 1-3 April 2014

Sample

WARWICK

Angular distributions

THE UNIVERSITY OF

CK

WAR

 $\rightarrow K^+ \mu^+ \mu^-$ results

 $\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_l} = \frac{3}{4}(1-F_H)(1-\cos^2\theta_l) + \frac{1}{2}F_H + A_{FB}\cos\theta_l$

• Positive in boundaries $0 \le F_H \le 3$ and $|A_{FB}| \le F_H/2$

RSITY OF

$B^+ \to K^+ \mu^+ \mu^-$ results

- Expect $A_{FB} \approx 0$ in the SM, F_H close to zero as well
- Measurement dominated by statistical uncertainties
- Consistent with SM
- In 1D results, other parameter is treated as nuisance, but remember they are correlated

$B^0 \to K_S \mu^+ \mu^-$ result

- Statistics for $B^0 \to K_S \mu^+ \mu^-$ still low
- Within large uncertainties consistent with SM
- Also consistency between B^+ and B^0
- Both decays together put constraint on tensor amplitudes
- \to Rule out large cancellation between left- and right-handed couplings in $B_s \to \mu^+\mu^-$

Different q^2 region sensitive to different contributions From S. Jäger at Workshop on $b \rightarrow sll$ processes, 1-3 April 2014

Photon polarization

- THE UNIVERSITY OF
- \blacksquare One way of accessing photon polarization is to look to $b \to s \gamma$ decays
- \blacksquare In the SM, decay proceeds through $b \to s$ penguin
- As W^{\pm} couples only to left-handed fermions, dominantly we get left-handed photon
- Right-handed contribution proportional to m_s/m_b
- New physics does not necessarily have same restriction
- Experimentally study angular distribution in $B^+ \to K^+ \pi^- \pi^+ \gamma$

$$\sum_{i=0,2,4} a_i(s, s_{13}, s_{23}) \cos^i \theta + \lambda_\gamma \sum_{j=1,3} a_j(s, s_{13}, s_{23}) \cos^j \theta$$

• Measure up-down asymmetry A_{UD} , which is proportional to photon polarization λ_{γ}

Photon polarization

- Challenge from photon energy resolution
- Background from decays with missing π not as well separated
- About 14000 signal decays
- For photon polarization itself, non-zero A_{UD} implies non-zero polarization
- $K\pi\pi$ mass spectrum with lot of contributions \Rightarrow conversion to photon polarization non-trivial

 $B \to K \pi \pi \gamma$ angular dist

THE UNIVERSITY OF WARWICK

Up-Down Asymmetry

before extracting λ_{γ}

Conclusions

 \blacksquare Rare $b \rightarrow s$ decays provide sensitive window to new physics

- Rich set of observables available
- Previous results with 1 fb⁻¹ mostly compatible with SM
- We are on way of updating all measurements with 3 fb^{-1} of data
- Isospin asymmetry in $B \to K \mu^+ \mu^-$ now better consistent with SM
- Differential branching fractions systematically $B \to K^{(*)} \mu^+ \mu^-$ systematically bellow expectation
- \blacksquare First observation of photon polarization in $b \to s \gamma$
- Much more to come in near future

Backup

LHCb detector

THE UNIVERSITY OF WARWICK

 $B^0 \rightarrow K^* \mu^+ \mu^-$ ang. dist.

THE UNIVERSITY OF WARWICK

$$\frac{9}{32\pi} \left[\frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\rm L}) \sin^2 \theta_K \cos 2\theta_\ell \right. \\ \left. - F_{\rm L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \right. \\ \left. + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \right. \\ \left. + S_6 \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \right. \\ \left. + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \right]$$

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_{\rm L}(1-F_{\rm L})}}$$

Selection with dimuons

- Uses BDT to combine kinematic, topological and PID inputs
- Trained on resonant ($J\!/\psi$) signal in data/simulation
- Simplify $c\overline{c}$ resonances veto
- Decays via $J\!/\psi$ used for normalization

Isospin asymmetry

$$A_{I} = \frac{\Gamma(B^{0} \to K^{(*)0} \mu \mu) - \Gamma(B^{+} \to K^{(*)+} \mu \mu)}{\Gamma(B^{0} \to K^{(*)0} \mu \mu) + \Gamma(B^{+} \to K^{(*)+} \mu \mu)}$$

- In SM expect A_I close to zero
- Test simple hypothesis of uniform A_I
- $B \rightarrow K \mu \mu$ p-value of 11% (1.5 σ)
- Compared to result in LHCb-PAPER-2012-011, more consistent with SM
- Change from different test, different normalization, reanalysis of 2011 data and difference between 2011 and 2012

Isospin asymmetry

Angular efficiciency

THE UNIVERSITY OF WARWICK

