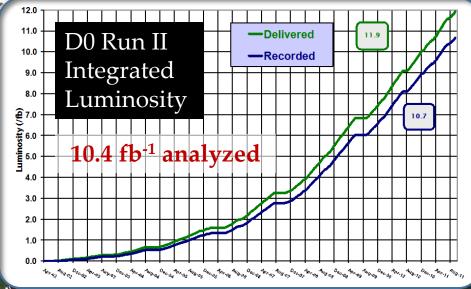
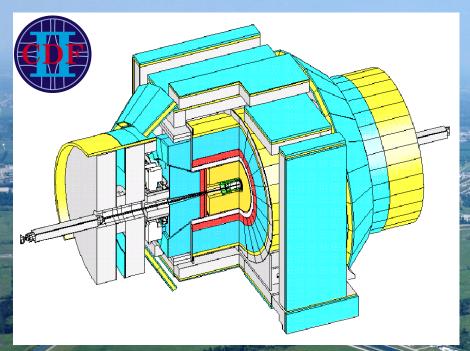
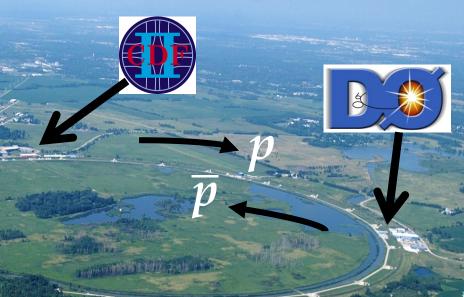

Tevatron accelerator located at the Fermilab site, 30 miles west of Chicago;

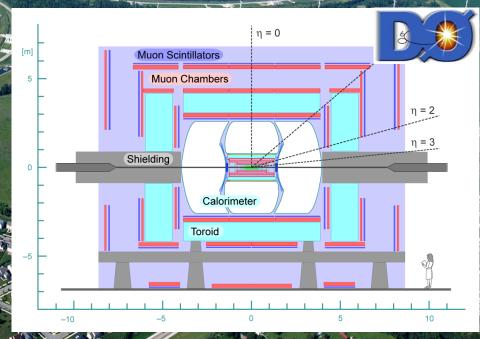

Collided protons and antiprotons at $\sqrt{s} = 1.96 \text{ TeV}$


No production asymmetries: symmetric initial state

Collisions ended in September 2011


Tevatron Accelerator

Complementary Detectors



CDF: large tracking volume, dedicated secondary vertex trigger

⇒ Excellent mass resolution and hadronic decay program

D0: Wide muon acceptance, chargesymmetric tracker, regular magnet polarity reversal

⇒ Unique data set for CPV analyses, especially with muons

Overview

"Study of CP-violating charge asymmetries of single muons and like-sign dimuons in ppbar collisions" Phys. Rev. D **89**, 012002 (2014), <u>arXiv:1310.0447</u>

"Measurement of the direct CP-violating charge asymmetry in $D_s^{\pm} \rightarrow \phi \pi^{\pm}$ "

Phys. Rev. Lett. 112, 111804 (2014), arXiv:1312.0741

"Search for the X(4140) state in B⁺ \rightarrow J/ $\psi \phi$ K⁺ decays with the D0 detector" Phys. Rev. D **89**, 012004 (2014), <u>arXiv:1309.6580</u>

"Study of orbitally excited B mesons and evidence for a new B π resonance" Submitted to Phys. Rev. D, <u>arXiv:1309.5961</u>

"Measurement of **b baryon** properties at CDF"

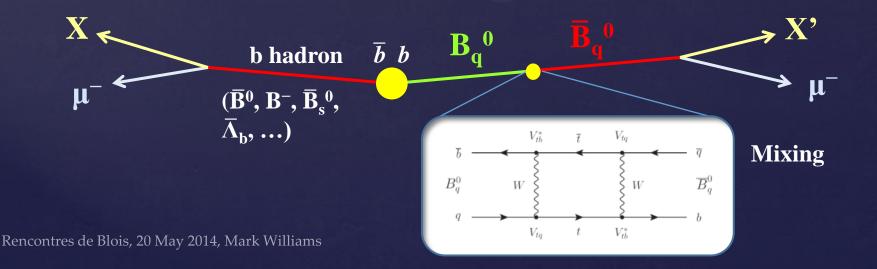
Phys. Rev. **D 89**, 072014 (2014), arXiv:1403.8126

"Measurement of the $B_c^+ \rightarrow J/\psi \mu^+ \nu$ relative cross section using the complete CDF dataset" CDF Public Note 11083

Measure charge asymmetry in production of inclusive muons, and like-charge dimuons from initially symmetric $p\bar{p}$ collisions

Correct for detector asymmetries (dominated by asymmetry in $K\rightarrow\mu$ and in muon reconstruction)

⇒ Resulting quantity is a *model-independent* measure of CP violation

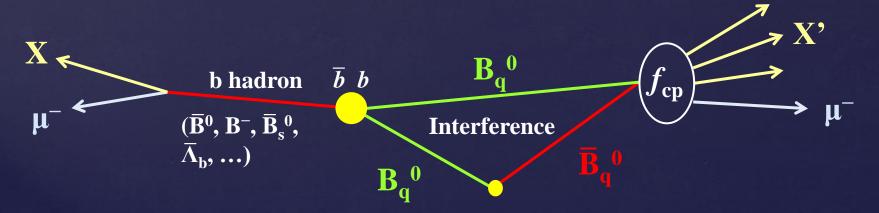


Measure charge asymmetry in production of inclusive muons, and like-charge dimuons from initially symmetric $p\bar{p}$ collisions

Correct for detector asymmetries (dominated by asymmetry in $K \rightarrow \mu$ and in muon reconstruction)

⇒ Resulting quantity is a *model-independent* measure of CP violation

Interpreted in terms of CPV in $B_{(s)}^{0}$ meson mixing (parameters: a_{sl}^{d} , a_{sl}^{s})...



Measure charge asymmetry in production of inclusive muons, and like-charge dimuons from initially symmetric $p\bar{p}$ collisions

Correct for detector asymmetries (dominated by asymmetry in $K \rightarrow \mu$ and in muon reconstruction)

⇒ Resulting quantity is a *model-independent* measure of CP violation

Interpreted in terms of CPV in $B_{(s)}^{0}$ meson mixing (parameters: $\mathbf{a^d}_{sl}$, $\mathbf{a^s}_{sl}$), and in interference between mixed and direct $\mathbf{B^0}$ decays ($\Delta\Gamma_d$)

1) Measure raw asymmetries by counting muons:

Raw single muon charge asymmetry,
$$a = \frac{N(\mu^+) - N(\mu^-)}{N(\mu^+) + N(\mu^-)}$$

Raw same-sign dimuon charge asymmetry, $A = \frac{N(\mu^+\mu^+) - N(\mu^-\mu^-)}{N(\mu^+\mu^+) + N(\mu^-\mu^-)}$

2) Correct for background asymmetries from detector effects:

Model-independent
asymmetries – i.e. the –
degree of CP violation in
muon production

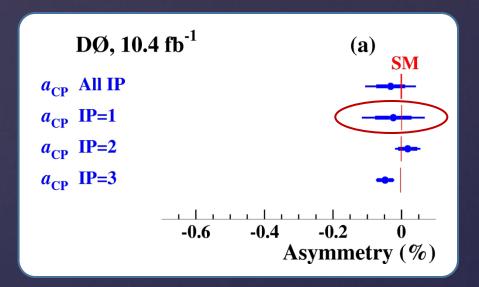
$$\begin{cases} a_{\text{CP}} = a & a_{\text{bkg}} \\ A_{\text{CP}} = A & A_{\text{bkg}} \end{cases}$$

Background asymmetries: dominated by different interactions of particles/antiparticles in the detector

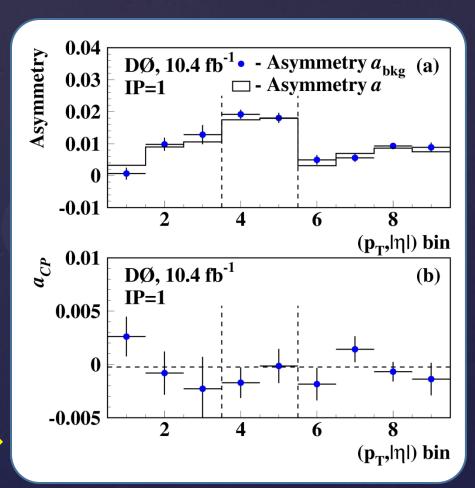
History:

Three previous measurements from D0, all find asymmetry significantly larger than SM prediction

$\int Ldt$	asymmetry A_{CP}
$1.0 \; {\rm fb}^{-1}$	$(-0.28 \pm 0.13 \pm 0.09)\%$
$6.1 \; {\rm fb^{-1}}$	$(-0.252 \pm 0.088 \pm 0.092)\%$
9.0 fb^{-1}	$(-0.276 \pm 0.067 \pm 0.063)\%$


What's new?

- Full Tevatron Run II sample analyzed (10.4 fb⁻¹)
- Measurement performed in 9 kinematic bins of $(p_T, |\eta|) \Rightarrow$ improved granularity of background asymmetries
- Separate analysis in 3 impact parameter regions for single muons, $3 \otimes 3=6$ regions for dimuons \Rightarrow more sensitivity to differentiate possible sources of CPV, also validates treatment of BG asymmetries.
- Now consider additional SM source from CPV in interference

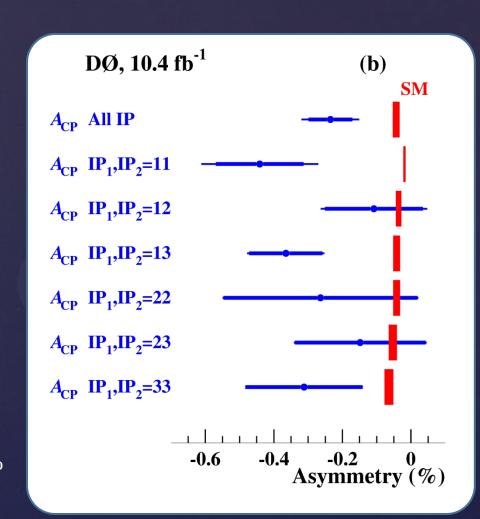

Results: a_{CP}

Consistency of a_{CP} with zero is an important closure test

All sources of CPV will be highly suppressed in this sample

Can also compare a and a_{bkg} in each of the 9 kinematic bins

Results: A_{CP}


Major difference: global offset between observed raw asymmetry A and expected background $A_{
m bkg}$

$$A_{CP} = (-0.235 \pm 0.064 \pm 0.055)\%$$

Trend observed for all IP regions

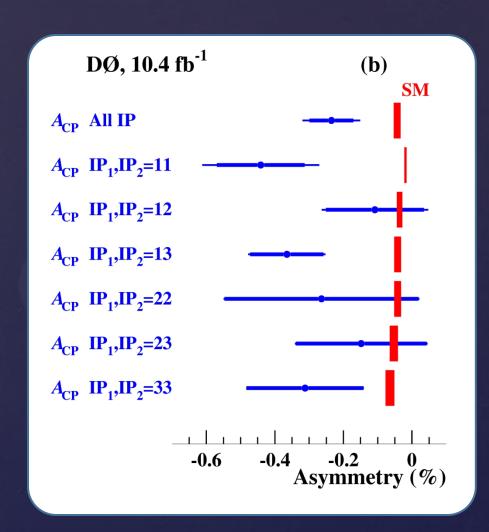
Also consistently deviating from the SM prediction

 $A_{\rm CP}$ consistent in all bins, despite raw asymmetry varying between $+0.7\% \rightarrow -0.5\%$

Results: A_{CP}

Combining all 9 IP measurements (3 single muon + 6 same-sign dimuon)

Fit assuming zero CP violation gives:


$$\chi^2 = 36.5 / 9$$
 d.o.f

4.1\sigma evidence for non-zero charge asymmetry

Fit to the SM predictions:

$$\chi^2 = 31.0 / 9 \text{ d.o.f}$$

 3.6σ disagreement with SM predictions

3 parameter fit:

$$\chi^2/\text{d.o.f.} = 10.1/6$$

$$a_{\rm sl}^d = (-0.62 \pm 0.43)\%$$

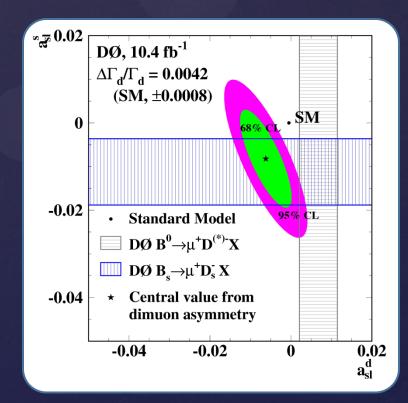
$$a_{sl}^s = (-0.82 \pm 0.99)\%$$

$$\Delta \Gamma_d / \Gamma_d = (+0.50 \pm 1.38)\%$$

$$\rho_{ds} = -0.61$$

$$\rho_{d\Delta\Gamma} = -0.03$$

$$\rho_{s\Delta\Gamma} = +0.66$$


$$\rho_{dA\Gamma} = -0.03$$

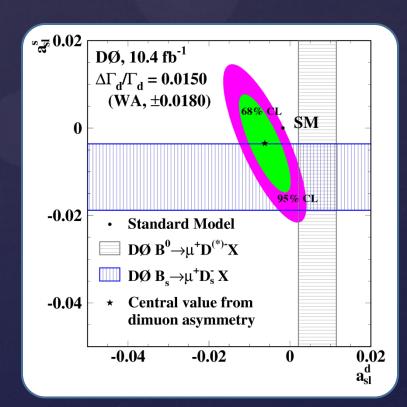
$$\rho_{SAT} = +0.66$$

Disagrees with the SM point at the 3.0σ level

Visualized by projecting onto (a^d_{sl}, a^s_{sl}) plane at the SM prediction of $\Delta \Gamma_d / \Gamma_d$

(SM value of $\Delta\Gamma_d/\Gamma_d = +0.42\%$ agrees with the central value of the fit)

Both mixing asymmetries a_{sl}^s and a_{sl}^d have been recently measured with good precision (D0, LHCb, BaBar)


In contrast, $\Delta\Gamma_d/\Gamma_d$ is poorly constrained experimentally:

We can repeat the fit with $\Delta\Gamma_d/\Gamma_d$ fixed to this world average

$$\Delta\Gamma_{\rm d}/\Gamma_{\rm d} = (+1.5 \pm 1.8)\%$$

Mixing asymmetries are then in agreement with SM within 1.9σ

Important to perform independent measurements of $\Delta\Gamma_d/\Gamma_d$

Direct CPV in $D_s^{\pm} \rightarrow \phi \pi^{\pm}$ Decays

What?

$$\mathbf{A}_{\mathbf{D}_{\mathbf{s}}} = \frac{\Gamma(\mathbf{D}_{\mathbf{s}}^{+}) - \Gamma(\mathbf{D}_{\mathbf{s}}^{-})}{\Gamma(\mathbf{D}_{\mathbf{s}}^{+}) + \Gamma(\mathbf{D}_{\mathbf{s}}^{-})}$$

Only single published measurement (CLEO, 2013): $A_{D_0} = (-0.5 \pm 0.8 \pm 0.4)\%$

Why?

No CPV expected in SM – tree and loop diagrams have same weak phase

⇒ Strong test of CPV mechanism in SM, sensitive to New Physics

Also *assumed* to have zero CPV in several other measurements:

- $\mathbf{a_{sl}^s}$ in $\mathbf{B_s^0} \rightarrow \mathbf{\overline{B}_s^0} \rightarrow \mathbf{D_s} \mu \nu \mathbf{X}$
- D_s production asymmetry @ LHCb

⇒ Important experimental input for future measurements – reduces dependence on theoretical assumptions

Direct CPV in $D_s^{\pm} \rightarrow \phi \pi^{\pm}$ Decays

How?

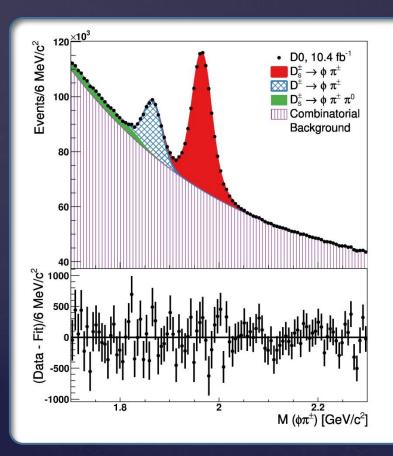
$$\mathbf{A_{D_s}} = \mathbf{A} - \mathbf{A_{det}} - \mathbf{A_{phys}}$$

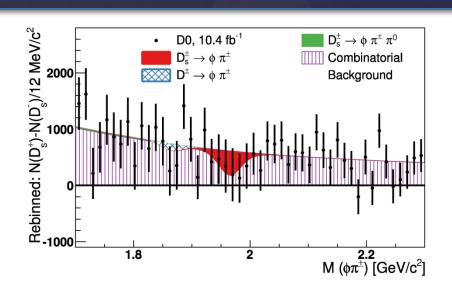
Simultaneous fit of sum and difference distributions to extract raw charge asymmetry

Tiny contribution from possible CPV in $B\rightarrow D$ (from MC and PDG)

Account for (small) contributions from detector asymmetries (data-driven)

$K^+K^-\pi^\pm$ final state:


- Dominant kaon asymmetry almost cancels
- Negligible pion asymmetry (symmetric tracker)

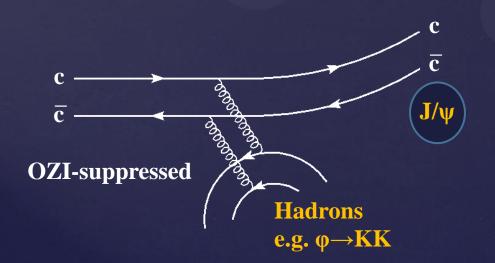

Direct CPV in $D_s^{\pm} \rightarrow \phi \pi^{\pm}$ Decays

How?

$$A_{D_s} = A - A_{det} - A_{phys}$$

$$A_{D_s} = (-0.38 \pm 0.26 \pm 0.08)\%$$

- Consistent with SM,
- Most precise measurement


Search for X(4140) State

Increasing interest in, & evidence for, exotic states, inconsistent with meson/baryon scheme (mass, width, decays, charge)

X(4140) is one such exotic state, with a mixed experimental past:

- CMS & CDF see 5σ (>3 σ) evidence
- Nothing observed by LHCb or Belle

Meson molecule

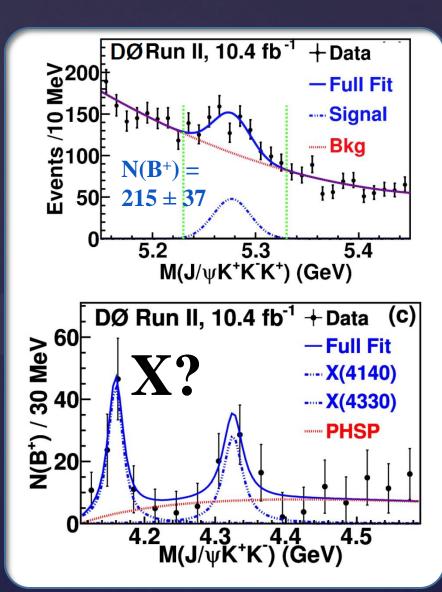
Tetraquark

Quark-gluon hybrid

Evidence has been in decays $B^+ \rightarrow X(4140)K^+$, $X(4140) \rightarrow J/\psi \phi$

Why exotic? For conventional charmonium, decay is OZI-suppressed, and no sign of favored open-charm decay $X(4140)\rightarrow DD$

Search for X(4140) State

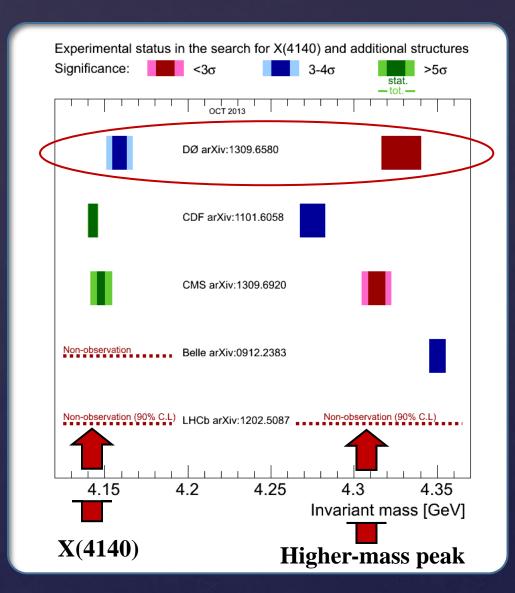


Event selection optimized to select $B^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-})\phi(K^{+}K^{-})K^{\pm}$

Search for peaking backgrounds, and apply vetos where needed $[\psi(2S) \rightarrow J/\psi \pi \pi)]$

After B^{\pm} signal confirmed, fit $M(J/\psi \phi K)$ in bins of $M(J/\psi \phi)$ to search for resonances:

- 3.1 σ evidence for narrow resonance consistent with X(4140)
- Second excess at higher mass (1.7σ)

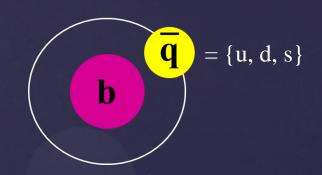

Search for X(4140) State

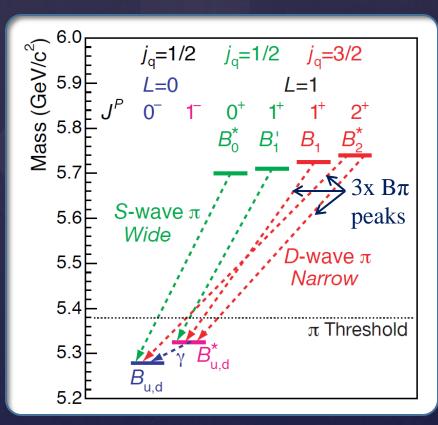
X(4140) properties:

- $M = 4159.0 \pm 4.3 \pm 6.6 \text{ MeV}$
- $\Gamma = 19.9 \pm 12.6 ^{+3.0}_{-8.0} \text{ MeV}$
- $\frac{B(B^{\pm} \rightarrow X(4140)K^{\pm})}{B(B^{\pm} \rightarrow J/\psi \phi K^{\pm})} = (19 \pm 7 \pm 4)\%$

Still no experimental consensus – need more data

B mesons are 'hydrogen atom' of QCD

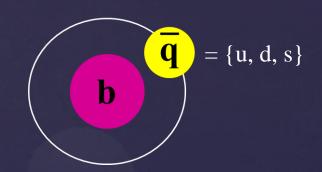

 \Rightarrow Energy levels given in terms of light-quark degrees-of-freedom (j, L, J, r)

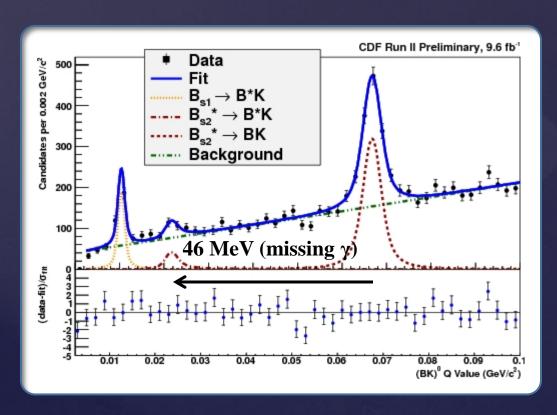

Strong tests of heavy-quark effective theories, lattice QCD, ...

Orbitally-excited states, $B_{(s)}^{**}$ de-excite to ground state or B^* through single pion (kaon) channel

Can search for the narrow $j_q=3/2$ states; expect to see three peaks in Q value M(Bh) - M(B) - M(h)

 $B^* \rightarrow B\gamma \Rightarrow 46 \text{ MeV}$ splitting of decays to B and B^*


Investigate all three light-quark flavors:


$$B^{+**} \rightarrow B^0 \pi^+$$

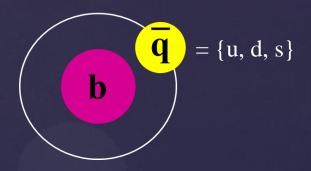
$$B^0** \longrightarrow B^+\pi^-$$

$$\underbrace{B_s^{\ 0**} \!\!\! \to \! B^+ \! K^-}_{}$$

With three B decay topologies: $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}$, $\mathbf{D}\pi$, $\mathbf{D}\pi\pi\pi$

Good K/ π separation \Rightarrow very clean B_s^{0**} signals

All three resonances observed

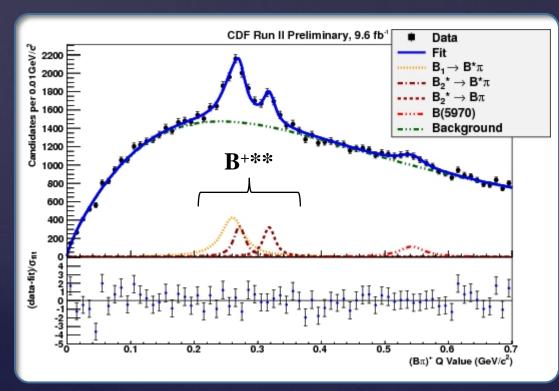

Investigate all three light-quark flavors:

$$egin{pmatrix} \mathbf{B}^{+**}{\longrightarrow}\mathbf{B}^{0}\pi^{+} \end{pmatrix}$$

$$B^{0**} \rightarrow B^+\pi^-$$

$$B_s^{0**} \rightarrow B^+K^-$$

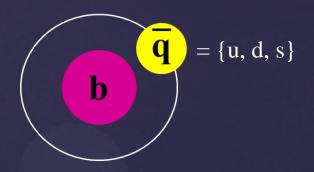
With three B decay topologies: $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}$, $\mathbf{D}\pi$, $\mathbf{D}\pi\pi\pi$



(similar results for B^{0**})

All masses, widths, and relative production rates measured for three flavors.

Consistent results in different B decay channels

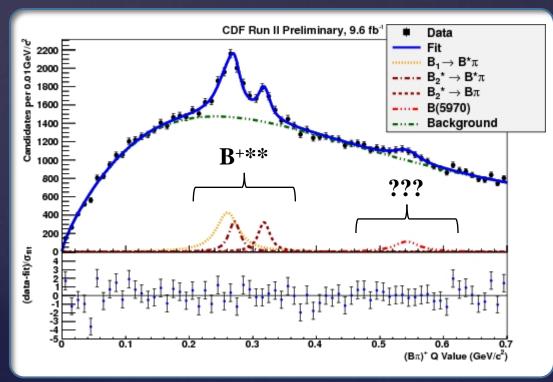

Investigate all three light-quark flavors:

$$B^{+**} \rightarrow B^0 \pi^+$$

$$B^{0**} \rightarrow B^+\pi^-$$

$$B_s^{0**} \rightarrow B^+K^-$$

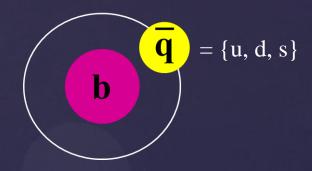
With three B decay topologies: $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}$, $\mathbf{D}\pi$, $\mathbf{D}\pi\pi\pi$

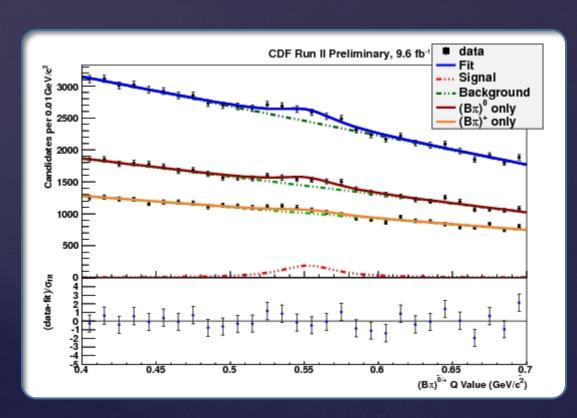


(similar results for B⁰**)

All masses, widths, and relative production rates measured for three flavors.

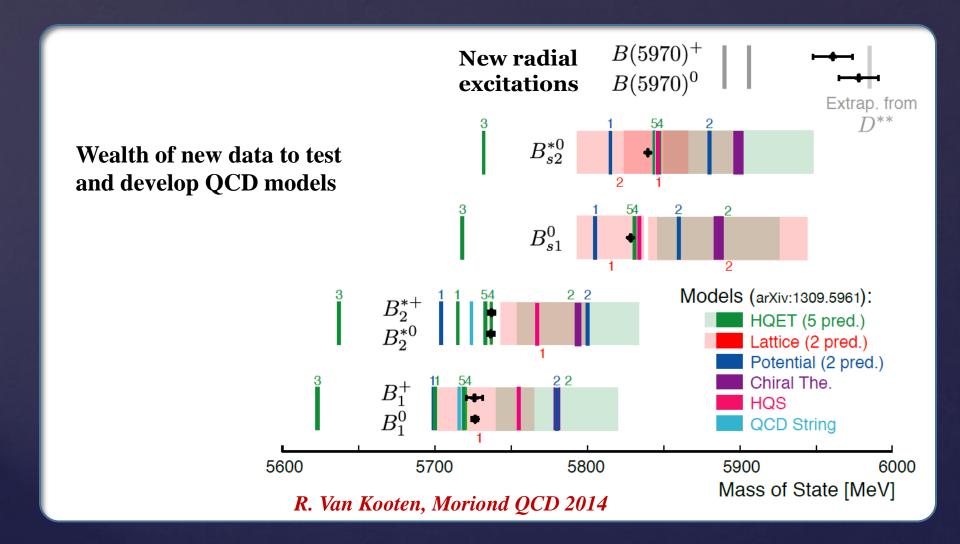
Consistent results in different B decay channels


Investigate all three light-quark flavors:


$$B^{+**} \rightarrow B^0 \pi^+$$

$$B^0 {\color{red} *} {\color{red} *} {\color{red} *} {\color{red} \longrightarrow} B^+ \pi^-$$

$$B_s^{0**} \rightarrow B^+K^-$$


With three B decay topologies: $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}$, $\mathbf{D}\pi$, $\mathbf{D}\pi\pi\pi$

Unexpected resonance observed at higher mass (5970 MeV)

- 4.4σ significance
- Seen in both $B^0\pi^+$ and $B^+\pi^-$ channels
- Consistent with radial
 excitation first evidence
 reported for B hadron

Many heavy baryons observed for the first time in the Tevatron/LHC era

Masses and lifetimes provide testing bed for QCD models

New CDF analysis with full Tevatron dataset \Rightarrow comprehensive analysis of several charmed and bottom ground-state baryons:

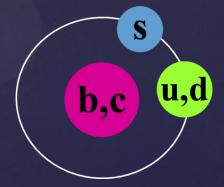
- 1) Measure **masses** and **lifetimes** of Λ_h^0 , Ξ_h^- , Ω_h^- in decays $X_b \rightarrow J/\psi X$, $X = \{\Lambda^0, \Xi^-, \Omega^-\}$
- 2) Measure masses of charm and beauty cascade baryons

$$ightarrow$$
 $\Xi_b^{0} \longrightarrow \Xi_c^{0} \pi^ \Xi_c^{0} \longrightarrow \Xi^{-} \pi^+$

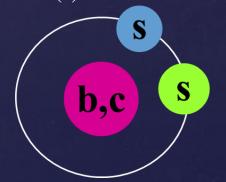
$$\Xi_c^0 \rightarrow \Xi^- \pi^+$$

$$\triangleright$$
 $\Xi_{\rm b}^{0} \rightarrow \Xi_{\rm c}^{+} \pi^ \Xi_{\rm c}^{+} \rightarrow \Xi^{-} \pi^+ \pi^+$

$$\Xi_c^+ \longrightarrow \Xi^- \pi^+ \pi^+$$


3) First evidence for corresponding doubly-strange b baryon

$$\triangleright \Omega_{\rm b}^{-} \rightarrow \Omega_{\rm c}^{0} \pi^{-}$$


$$\Omega_{\rm c}^{0} \rightarrow \Omega^{-} \pi^{+}$$

$$\Xi_{\mathbf{b}}^{-(0)} = d(u)s\mathbf{b}$$

$$\Xi_{\mathbf{c}}^{0(+)} = d(u)s\mathbf{c}$$

$$\Omega_{\mathrm{b(c)}}^{-(0)} = ssb(c)$$

Summary of Results

Compare LHCb:

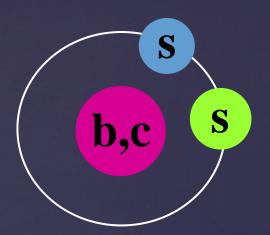
$$c\tau(\Xi_b^-) =$$
464.7 ± **31.3**µm

$$c\tau(\Omega_{b}^{-}) =$$
461.7 ± **72.0**µm

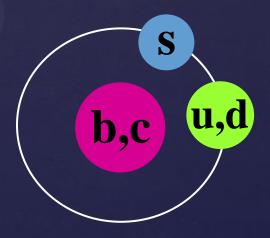
Final state	Mass (MeV/c^2)	$c\tau(\mu\mathrm{m})$	Yield
$\Xi_c^0(\Xi^-\pi^+)$	2470.85 ± 0.24	-	3582 ± 82
$\Xi_c^+(\Xi^-\pi^+\pi^+)$	2468.00 ± 0.18	-	5714 ± 108
$\Lambda_b(J/\psi\Lambda)$	5620.15 ± 0.31	468.4 ± 10.5	2920 ± 120
$\Xi_b^-(J/\psi\Xi^-)$	5793.2 ± 1.9	396 ± 43	112 ± 19
$\Xi_b^-(\Xi_c^0 \pi^-)$	5794.8 ± 5.0	-	33 ± 6
$\Xi_b^0(\Xi_c^+\pi^-)$	5788.7 ± 4.3	-	62 ± 9
$\Omega_b^-(J/\psi\Omega^-)$	6050.0 ± 4.1	497^{+159}_{-119}	22 ± 6
$\Omega_b^-(\Omega_c^0 \pi^-)$	6029 ± 11	-	$5.5\pm^{+2.5}_{-2.4}$

Also measure isospin splitting in $\Xi_{b(c)}$:

Only experiment to measure Ξ_b mass splitting


Tevatron experiments still active and producing papers

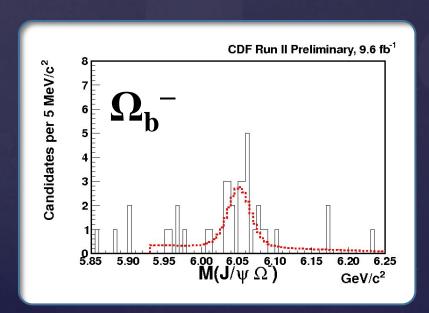
- Updating measurements with full dataset reusing tools and expertise
- Taking advantage of unique attributes (e.g. CPV / asymmetries)
- Opportunistic use of data based on other experiments/theory (e.g. exotics)

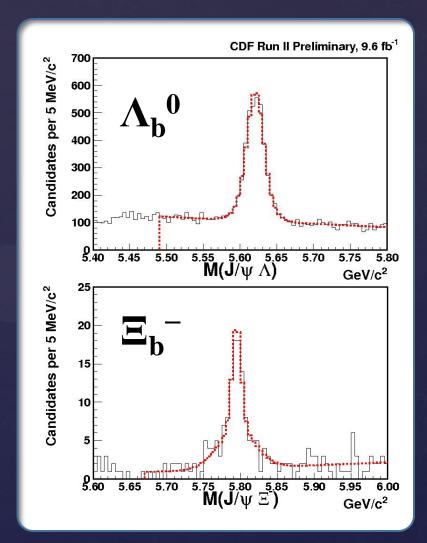

Continued puzzle in same-charge dimuon asymmetry

• Need dedicated measurements of $\Delta\Gamma_d/\Gamma_d$ to rule-out possible NP here

More measurements on their way for the summer...

Extra Material

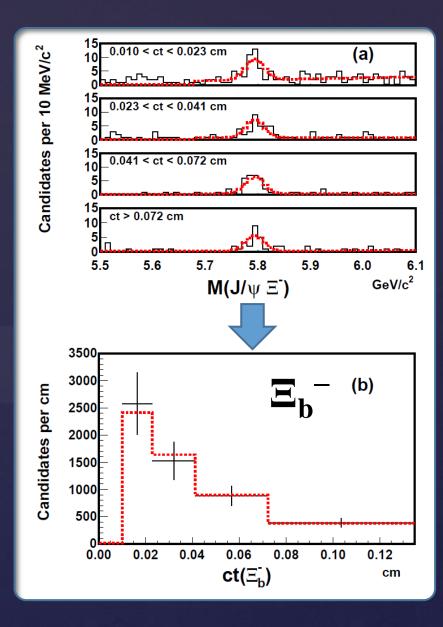




Lifetimes

 $X_b \rightarrow J/\psi X$ channels provide unbiased trigger for lifetime measurements

1) Perform unbinned mass fit for cτ>100μm range

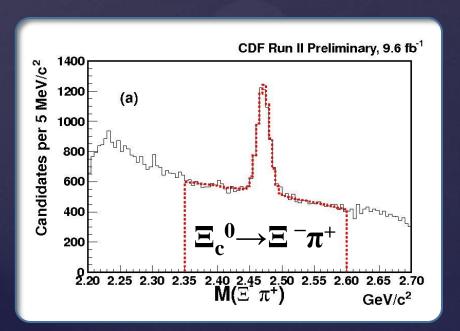


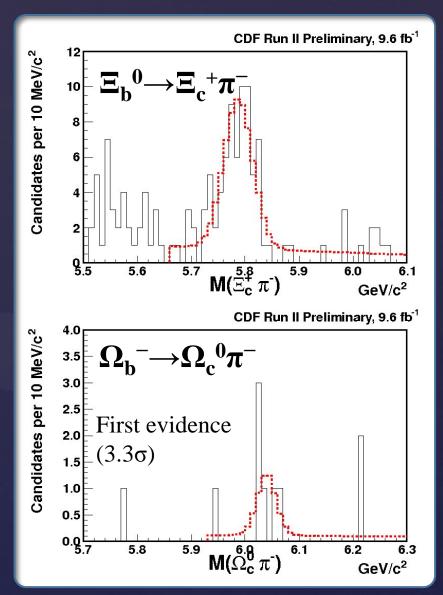
Lifetimes

 $X_b \rightarrow J/\psi X$ channels provide unbiased trigger for lifetime measurements

- 1) Perform unbinned mass fit for $c\tau$ >100 μ m range
- 2) Repeat fit in bins of proper decay length, with mass parameters fixed, to extract lifetime

e.g. $\Xi_{\rm b}^{-}$ case

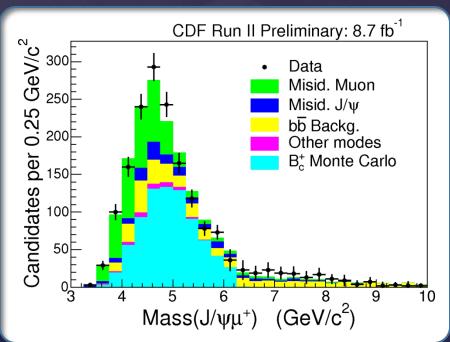


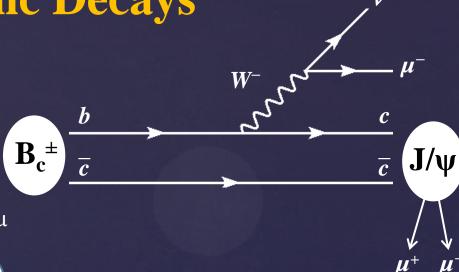


Hadronic decays of charm and beauty baryons

Use displaced SV trigger

Unbinned fits to extract masses




B_c[±] in Semileptonic Decays

Missing neutrino ⇒ wide reconstructed mass peak

Peaking background from mis-identified h→µ

$$N(B_c^+) = 739.5 \pm 39.6 ^{+19.8}_{-23.9}$$