Overview Of Dark Matter Searches With H.E.S.S.

Emrah Birsin

Overview

- The H.E.S.S. experiment
- Indirect DM searches
- Targets & Results
 - Sagittarius dwarf galaxy
 - Galactic center

- Detects Cherenkov light from particle showers
- 4 telescopes ($108m^2$ mirror area each) on square with 120m side length
 - Energy threshold 100GeV
 - FoV 5°, angular resolution $\approx 0.1^{\circ}$, energy resolution 15%
- new 1 big ($614m^2$ mirror area) telescope in the center of the square
 - Lowered energy threshold ~30 GeV
- Background dominated \rightarrow Background subtraction
- Dark matter results for H.E.S.S. I (4 small telescopes)

Background Estimation

- Acceptance radial symmetric around observation position
- Source free regions with same angular distance as Target area used for Background estimations

Indirect Dark Matter Searches

Indirect Dark Matter Searches

Thermal Dark Matter

$$\Omega_{dm}h^2 \approx \frac{3 \cdot 10^{-27} cm^3 s^{-1}}{\langle \sigma v \rangle} = 0.1$$

Expect to see WIMP Dark Matter around $\langle \sigma v \rangle = 3 \cdot 10^{-26} cm^3 s^{-1}$

Dwarf Galaxies I

- Close by $\mathcal{O}(10kpc)$
- Dwarf galaxies are devoid of astrophysical γ -ray sources
- High mass-to-light ratios (5-100)
- Expected DM content inside a small angular size → no contamination of the background region

Dwarf Galaxies II

Sagittarius Dwarf Galaxy

arXiv: 1307.4918

- 90h of data
- new J-factor takes into account tides

Galactic Center

- Two strong point-like sources
 - GC source could be PWN or central black hole
- Diffuse emission along the galactic plane

Galactic Center

- Two strong point-like sources
 - GC source could be PWN or central black hole
- Diffuse emission along the galactic plane
- Exclude known sources and the galactic plane

GC Halo Search

- less dependent on DM density profile
- 112h of data from GC
- Rotated pixel method, special version of a standard background method
 - background regions expected to contain dark matter annihilation

GC Halo Results

- Best limit
- best sensitivity at ~1 TeV
- still one order of magnitude above relic density prediction

GC Line Search

- Lines are smoking gun signatures
- Use all γ -ray like events in FoV, no background subtraction
- Fit Spectrum with additional Gaussian line with given energy.
- Not only sensitive to lines but also "peaks" like internal Bremsstrahlung

GC Line Search Results

- Limits from binned Likelihood assuming Poisson fluctuations
- complimentary to Fermi "standard" line search

Outlook (I)

- Dwarf stacking
 - combining results for better more robust limits
- H.E.S.S. II will lowers the energy threshold
 - close the gap to Fermi in the line search
 - look for the Fermi 130 GeV line

Outlook (II)

- CTA future Cherenkov telescope array
 - increase sensitivity by at least factor 10
 - lowered energy threshold $\mathcal{O}(10 GeV)$
- CTA will improve Galactic Halo limits and probe interesting models

Thanks for listening!

Backup

Fornax Galaxy Cluster

- Galaxy Clusters extended object, complicated structure
- Substructures can be important

Fornax Galaxy Cluster

- Galaxy Clusters extended object, complicated structure
- Substructures can be important
- Several J-factors investigated

Fornax Galaxy Cluster

- Galaxy Clusters complicated structure
- Substructures can be important
- Several J-factors investigated
- Further enhancement studied
 - Sommerfeld Effect
 - Internal Bremsstrahlung

10-18 ସ v >_{eff}/S (cm³ s-¹) 10⁻¹⁹ 10-20 10-21 10-22 10⁻²³ 10-24 10-25 hermally-produced DM 10-26 10-1 10[:] m_{DM}(TeV) 10

Astro. Phys. Jornal 750:123, 2012

Looking for Axions in PKS 2155-304

- PKS 2155-304 active galactic nucleus in a galaxy cluster
- Fit spectrum with log-parabola and EBL absorption
- Axionlike particles could induce bin-by-bin fluctuations in the spectrum

Looking for Axions in PKS 2155-304

- PKS 2155-304 active galactic nucleus
- Spectrum altered due to EBL absorption
- Axionlike particles could induce bin-by-bin fluctuations in the spectrum

