26th Rencontres de Blois: Particle Physics and Cosmology

PRESENT AND FUTURE DIRECTIONS IN THE OBSERVATION OF ULTRA-HIGH ENERGY COSMIC RAYS WITH THE PIERRE AUGER OBSERVATORY

Antonio Bueno on behalf of the Pierre Auger Collaboration (University of Granada)

MOST ENERGETIC PARTICLES EVER OBSERVED

Production sources

Acceleration mechanisms

Mass composition

Ultra-High Energy Cosmic Rays: Unanswered questions

Fundamental interactions

DETECTOR REQUISITES FOR AIR SHOWER MEASUREMENTS ABOVE I EeV

- <u>Particle flux is extremely small</u> (I particle per km² per century for energies around 10²⁰ eV)
 - Large areas required!
- <u>Hybrid detector</u> required for excellent measurement capabilities
 - Combination of ground array (particle detectors, 100% duty cycle) & optical devices (atmospheric fluorescence, 13% duty cycle)
 - Data-driven calibration of the ground array

PIERRE AUGER OBSERVATORY

4 sites, 24+3 telescopes

1660 water Cherenkov detectors

Triangular grid, side = 1.5 km

HYBRID DETECTION

SCIENTIFIC ACHIEVEMENTS

40 publications, 3260 citations, 81 citations/article

ALL-PARTICLE SPECTRUM

MASS COMPOSITION

HADRONIC INTERACTIONS

Inclined showers (i.e. θ >62°) Signal dominated by muons

Muon discrepancy between data and models of hadronic interactions

10

ADVANCING THE UNDERSTANDING OF UHECR

Study fundamental interactions at the scale of ~100 TeV Search for new physics: LIV, extra dimensions,

GZK cut off or sources out of steam?

Importance of enhanced composition sensitivity

Proton astronomy?

Are there Anisotropy ultra-high energy studies photons and based on neutrinos? event-by-event mass estimation

PLANNED DETECTOR UPGRADE TO OPEN A NEW FLOURISHING ERA OF UHECR MEASUREMENTS

IMPORTANCE OF ENHANCED MUON DETECTION

12

- Composition mostly based on optical observation of Xmax
 - <u>15% duty cycle</u>
- Surface detector offers 100%
 <u>duty cycle</u> Better mass
 discrimination capabilities by

Improving separation of electromagnetic and muonic shower components!

DETECTOR UPGRADE PLANS Layered Water DDC (under the

- Take data until 2023
- It will triple our present statistics
- Improved electronics
 - Enlarged dynamic range & faster sampling
- Enhanced muon detection capabilities

SUMMARY

- The Pierre Auger Observatory has provided copious data of unprecedented quality and size.
- Intensive campaign to improve detector capabilities: seeking definitive answers to open key questions.
- Setting ground for a next-generation UHECR experiment (ten times bigger in size?).

BACK-UP

CHANGE IN FD ENERGIES

6% 6
6
ó
6
3%
%
%
8%

SYSTEMATIC UNCERTAINTY OF ENERGY SCALE

Absolute fluorescence yield	3.4%	
Fluores. spectrum and quenching param.	1.1%	Ļ
Sub total (Fluorescence Yield)	3.6%	14%
Aerosol optical depth	3% ÷ 6%	-
Aerosol phase function	1%	
Wavelength dependence of aerosol scattering	0.5%	
Atmospheric density profile	1%	
Sub total (Atmosphere)	3.4% ÷ 6.2%	5% ÷ 8%
Absolute FD calibration	9%	-
Nightly relative calibration	2%	and the second
Optical efficiency	3.5%	
-1		•
Sub total (FD calibration)	9.9%	9.5%
Sub total (FD calibration) Folding with point spread function	9.9%	9.5%
Sub total (FD calibration) Folding with point spread function Multiple scattering model	9.9% * 5%	9.5%
Sub total (FD calibration) Folding with point spread function Multiple scattering model Simulation bias	9.9% **** 5% 1% 2%	9.5%
Sub total (FD calibration) Folding with point spread function Multiple scattering model Simulation bias Constraints in the Gaisser-Hillas fit	9.9% ▲ 5% 1% 2% 3.5% ÷ 1%	9.5%
Sub total (FD calibration) Folding with point spread function Multiple scattering model Simulation bias Constraints in the Gaisser-Hillas fit Sub total (FD profile rec.)	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6%	9.5%
Sub total (FD calibration)Folding with point spread functionMultiple scattering modelSimulation biasConstraints in the Gaisser-Hillas fitSub total (FD profile rec.)Invisible energy	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6% 3% ÷ 1.5%	9.5% 10% 4%
Sub total (FD calibration)Folding with point spread functionMultiple scattering modelSimulation biasConstraints in the Gaisser-Hillas fitSub total (FD profile rec.)Invisible energyStatistical error of the SD calib. fit	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6% 3% ÷ 1.5% 0.7% ÷ 1.8%	9.5% 10% 4%
Sub total (FD calibration)Folding with point spread functionMultiple scattering modelSimulation biasConstraints in the Gaisser-Hillas fitSub total (FD profile rec.)Invisible energyStatistical error of the SD calib. fitStability of the energy scale	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6% 3% ÷ 1.5% 0.7% ÷ 1.8% 5%	9.5% 10% 4%

RED: NEW

BLACK: OLD

CORRELATION WITH AGNS OF VCV CATALOG

LARGE SCALE ANISOTROPY

Comparison to previous Results

new reconstruction and calibration

10¹⁹

10¹⁸

 $\langle X_{max} \rangle$ [g/cm²]

MPD in a nutshell χ² / ndf 18.07 / 22 Prob 0.7016 p0 55.03 ± 2.77 p2 632.1±10.0 uon production point p3 66.88 ± 4.67 shower front plane z 30 20 θ X^µmax ground 1000 1200 400 600 800 1400

Muons travel along straight lines close to the speed of light

• The distribution of produced muons vs depth is the MPD

$$\frac{dN^{\mu}}{dX^{\mu}} \equiv MPD \longrightarrow X^{\mu}_{max}$$
[55°,65°]

X[g/cm²]

Additional constraints to hadronic interaction models!

CROSS SECTION MEASUREMENT

$$\sigma_{p-Air} = (505 \pm 22_{stat} (^{+26}_{34})_{sys}) \text{ mb}$$

Contaminations assumed for systematics
< 25% He < 0.5% γ

PHOTONS & NEUTRINOS

Summary

AUGER provides a wealth of high quality data

