CMB Lensing and B-modes from the South Pole Telescope

Clarence Chang Argonne National Lab Astronomy & Astrophysics, University of Chicago

26th Rencontres de Blois May 18-23, 2014

The South Pole Telescope Collaboration

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope
100, 150, 220 GHz and
1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 100,150,220 GHz

2012: SPTpol

1600 detectors 100,150 GHz **+Polarization**

2016: SPT-3G ~15,200 detectors 100,150,220 GHz **+Polarization**

Primordial features • Inflation

Acoustic features

- Energy density of early universe
- cosmological parameters
 Dark Radiation

Acoustic features

- Energy density of early universe
- cosmological parameters
 Dark Radiation

Acoustic features

Primordial features

Inflation

- Energy density of early universe
- cosmological parameters 1032 second
 - Dark Radiation; $N_{eff} = 3.046$

Lensing

Large-Scale Structure Lenses the CMB

- RMS deflection of ~2.5'
- Lensing efficiency peaks at
- z ~ 2, or 7000 Mpc distance
- Coherent on ~degree
- (~300 Mpc) scales

Lensing of the CMB

17°x17°

lensing potential

unlensed cmb

from Alex van Engelen

Lensing of the CMB

17°x17°

lensing potential

lensed cmb

from Alex van Engelen

high resolution and sensitivity map of the CMB from SPT covering 1/16 of the sky

CMB Lensing Map reconstruction of mass projected along the line of sight to the CMB

Lensing convergence map smoothed to 1 deg resolution from CMB lensing analysis of SPT 2500 deg² survey

"Mass Map" from Planck, ~70% of sky

Complementary to SPT's map: noisier but all-sky.

100 sq. deg. of Herschel SPIRE data on "SPT deep field"

RGB = 500,350,250 um

Smooth 500um map to ~1 degree scales (~100 com. Mpc).

Smooth 500um map to ~1 degree scales (~100 com. Mpc).

Add mass contours from SPT CMB lensing.

Smooth 500um map to ~1 degree scales (~100 com. Mpc).

Add mass contours from SPT CMB lensing.

~10o correlation signal Holder et al. 2013

CMB Lensing Map reconstruction of mass projected along the line of sight to the CMB

Lensing convergence map smoothed to 1 deg resolution from CMB lensing analysis of SPT 2500 deg² survey

Neutrino mass

CMB polarimetry

• CMB polarized via Thomson scattering and local anisotropy (e.g. Sun scattering in atmosphere)

CMB polarimetry: E-modes

- CMB polarized via Thomson scattering and local anisotropy (e.g. Sun scattering in atmosphere)
- Density/Temperature anisotropy generates intrinsic CMB polarization

CMB polarimetry: E-modes

- CMB polarized via Thompson scattering and local anisotropy (e.g. Sun scattering in atmosphere)
- Density/Temperature anisotropy generates intrinsic CMB polarization

 EE power spectrum is a different probe of same physics producing TT spectrum

SPTpol 1st year Q/U maps (E-modes)

E-modes, 500 deg²

CMB Lensing via CMB polarization

CMB polarimetry: E-modes & B-modes

- CMB polarized via Thompson scattering and local anisotropy (e.g. Sun scattering in atmosphere)
- Density/Temperature anisotropy generates intrinsic CMB polarization
 - parity odd patterns, "Bmodes"
 - Gravitational lensing of "Emodes" (shearing)
 - Gravitational waves from inflation

Measuring CMB lensing B-modes

Е

SPTpol

Traces DM/lensing potential

SPTpol CIB (Herschel) B

Cross template w/ B-mode map and look for signal

7.7σ detection of CMB lensing B-modes

B-modes: From detection to precision

Large arrays of Multi-chroic pixels

Suzuki et al., Proc. SPIE 8452, Mm, Sub-mm, and Far-IR Detectors and Instr. for Astro. VI, 84523H (October 5, 2012)

- Developing arrays of three-color pixels for SPT-3G
- Increase bolo density from 2 per pixel to 6 per pixel

SPT-3G goals (first light early 2016)

- Target 10x mapping speed of SPTpol
 - 16,000 bolometer array
 - Reduce optical load
 - Double FOV
- Target 2500 deg² to 3 uK depth

SPT-3G goals (first light early 2016)

Future science with B-modes: CMB-S4

Experimental Evolution

Evolution of CMB Focal Planes

'CMB-S4' Stage 4 CMB experiment

(footprint overlap with DES, LSST, DESI, etc)

- 200,000 500,000 detectors on multiple platforms
- span 40 240 GHz for foreground removal
- target noise of ~1 uK-arcmin depth over half the sky
- start ~2020

Projected CMB Constraints

	σ (<i>r</i>)	$\sigma(N_{\rm eff})$	σ(Σ <i>m</i> _v)
Current CMB	0.1	0.34	117 meV
2016 Stage 2: SPTpol	0.03	0.12	96 meV
2020 Stage 3: SPT-3G	0.01	0.06	61 ^a meV
2024 Stage 4: CMB-S4	0.001	0.02	16 ^b meV

^a Includes BOSS prior^b Includes DESI prior

The CMB measurements will achieve important benchmarks:

- Energy scale of inflation? Test large vs small field inflation
- Dark Radiation? New physics in neutrino or dark sector?
- Cosmological detection of neutrino mass, Σm_v .

Snowmass: CF5 Neutrinos + Inflation documents arXiv:1309.5383, 1309.5381, see also Wu et al., <u>arXiv:1402.4108</u>

Summing up

- Exciting time for CMB!
- Post-Planck CMB science lies with higher resolution and polarization
- We see B-modes!
 - SPTpol measures B-modes from lensing @ 7.7σ
- Future science with B-modes: detector array technology
- Next: SPT-3G
- Follow: CMB-S4