Recent results in the Supernova Legacy Survey SNLS

Patrick El-Hage

May 21, 2014

Supernova Cosmology	Recent Improvements
●000	00000

In a flat universe with constant equations of state, and a constant luminosity L for all objects considered :

• By definition, flux is related to luminosity distance.

Supernova Cosmology	Recent Improvements
●000	00000

In a flat universe with constant equations of state, and a constant luminosity L for all objects considered :

$$F = \frac{L}{4\pi d_L^2}$$
$$d_L(z) = \frac{c}{H_0} \int_0^z \frac{dz'}{H(z')/H_0}$$

- By definition, flux is related to luminosity distance.
- Luminosity distance evolves with redshift depending on the expansion rate.

Supernova Cosmology	Recent Improvements
●000	00000

In a flat universe with constant equations of state, and a constant luminosity L for all objects considered :

- By definition, flux is related to luminosity distance.
- Luminosity distance evolves with redshift depending on the expansion rate.
- The expansion rate depends on cosmological parameters through the Friedmann equations.

Supernova Cosmology	Recent Improvements
●000	00000

In a flat universe with constant equations of state, and a constant luminosity L for all objects considered :

 $\mu = 5 imes log_{10}(d_L) - 5 imes log_{10}(H_0/c)$

- By definition, flux is related to luminosity distance.
- Luminosity distance evolves with redshift depending on the expansion rate.
- The expansion rate depends on cosmological parameters through the Friedmann equations.
- In practice use distance modulus μ .

Supernova	Cosmology
0000	

Supernova (Losmology	
0000		

• For μ to be meaningful, we need *L* to be constant.

- For μ to be meaningful, we need L to be constant.
- We need to compare the SN at the same phase (time relative to lightcurve maximum) and wavelength.

- For μ to be meaningful, we need *L* to be constant.
- We need to compare the SN at the same phase (time relative to lightcurve maximum) and wavelength.
- The solution is to construct lightcurves in different wavelength bands and fit a model to it that spans both color and time.

$$\mu_B = \mathbf{m}_B^{\star} - \mathcal{M}_B + \mathbf{\alpha} \times \text{stretch}$$
$$- \mathbf{\beta} \times \text{color}$$

- For μ to be meaningful, we need L to be constant.
- We need to compare the SN at the same phase (time relative to lightcurve maximum) and wavelength.
- The solution is to construct lightcurves in different wavelength bands and fit a model to it that spans both color and time.

$$\mu_B = m_B^{\star} - \mathcal{M}_B + \alpha \times \text{stretch}$$

- $\beta \times color$

Such a model allows for standardization corrections (i.e. implementing magnitude corrections based on color and stretch).

$$\mu_B = m_B^{\star} - \mathcal{M}_B$$

• Begin with naive estimator.

$$\mu_B = m_B^{\star} - \mathcal{M}_B$$

• Begin with naive estimator.

 $\mu_B = m_B^{\star} - \mathcal{M}_B + \alpha \times stretch$

- Begin with naive estimator.
- Add correction based on observed correlation of stretch and magnitude.

-0.3 -0.2

-0.1 -0 0.1

с

0.2 0.3 0.4

Supernova Cosmology ○○○●	Recent Improvements 00000	Preliminary Results OO
A review of the steps Look for the Supernov	a.	
	d.	

Supernova Cosmology	Recent Improvements	Preliminary Results
000•	00000	00

- Look for the Supernova.
- Get a spectrum for identification and redshift.

Supernova Cosmology	Recent Improvements
0000	00000

- **1** Look for the Supernova.
- e Get a spectrum for identification and redshift.
- Ompute lightcurve.

Supernova Cosmology	Recent Improvements	Preliminary Results
000●	00000	00

- Look for the Supernova.
- e Get a spectrum for identification and redshift.
- Compute lightcurve.
- I Fit lightcurve model.

Supernova Cosmology	Recent Improvements
0000	00000

- Look for the Supernova.
- ② Get a spectrum for identification and redshift.
- Compute lightcurve.
- G Fit lightcurve model.
- Onstruct Hubble diagram.

The SNLS/SDSS JLA working group

Formed to address the issue of measurement systematics

- Transverse working group joining the two main SNe-Ia surveys
- Started in June 2010
- Share data, code and expertise

2 main outcomes:

- SNe light curve model: Kessler et al. (2013), Mosher et al. (2014) \rightarrow Validation of the SALT2 model
- Joint photometric calibration analysis: Betoule et al. (2013)
 → Recalibration of the SNLS and SDSS

Supernova	Cosmology
0000	

Supernova Cosmology	Recent Improvements	Preliminary Results
0000	0000	00

• Consider an object of spectrum : $\phi(\lambda)$

- Consider an object of spectrum : $\phi(\lambda)$
- Need to consider the instrumental response : T(λ)

- Consider an object of spectrum : $\phi(\lambda)$
- Need to consider the instrumental response : $T(\lambda)$
- The electrons collected in the CCD are the integrated luminosity of the object in a given band : $\int \phi(\lambda) T(\lambda) \lambda d\lambda$

- Consider an object of spectrum : $\phi(\lambda)$
- Need to consider the instrumental response : $T(\lambda)$
- The electrons collected in the CCD are the integrated luminosity of the object in a given band : $\int \phi(\lambda) T(\lambda) \lambda d\lambda$

 $\int \phi_{S}(\lambda) T(\lambda) \lambda d\lambda$

How to reach $\sim 0.5\%$ accuracy in absolute calibration :

Short and redundant paths for calibration transfer

New data

- Direct observation of HST stars
- Direct SNLS/SDSS cross-calibration

Enable:

- Comparison of several paths
- 0.3% accuracy in gri

Final uncertainty dominated by $\ensuremath{\mathsf{HST}}$ calibration

See Betoule et al. 2013 for more details.

Photometry Improvements

• New PSF photometry algorithm without image resampling.

$$M_{i,p} = \left\{ \left[f_i \times \phi_{ref}(\vec{x}_p - \vec{x}_{SN}) + gal_{ref} \right] \otimes K_i \right\}_p + s_i$$

Photometry Improvements

- New PSF photometry algorithm without image resampling.
- Simulations guarantee linearity to $(1.34 \pm 2.72) \times 10^{-4}$

$$M_{i,p} = \left\{ \left[f_i \times \phi_{ref}(\vec{x}_p - \vec{x}_{SN}) + gal_{ref} \right] \otimes K_i \right\}_p + s_i$$

Photometry Improvements

- New PSF photometry algorithm without image resampling.
- Simulations guarantee linearity to $(1.34 \pm 2.72) \times 10^{-4}$
- \bullet Largest systematic from zero point computation is 1.3×10^{-4}

$$\mathcal{M}_{i,p} = \left\{ \left[f_i \times \phi_{ref}(\vec{x}_p - \vec{x}_{SN}) + gal_{ref} \right] \otimes \mathcal{K}_i \right\}_p + s_i$$

SALT2 Improvements

• Larger data set.

Table: Expanding the training sample.

	JLA	SNLS 5
Lightcurves	221	~ 800
Spectra	482	~ 4000

SALT2 Improvements

- Larger data set.
- Exploit larger data set to replace regularization with adapted mesh.

Table: Expanding the training sample.

	JLA	SNLS 5
Lightcurves	221	~ 800
Spectra	482	~ 4000

SALT2 Improvements

- Larger data set.
- Exploit larger data set to replace regularization with adapted mesh.
- End-to-end test of the SALT2 method (Mosher et al. 2014.).

Table: Expanding the training sample.

	JLA	SNLS 5
Lightcurves	221	~ 800
Spectra	482	~ 4000

Supernova	Cosmology
0000	

Table: Evolution of the cosmology sample.

	SNLS 1	SNLS 3	JLA	SNLS5
Low z	44			
SDSS	0			
SNLS	73			
HST	0			

Supernova Cosmology	Recent Improvements
0000	00000

	SNLS 1	SNLS 3	JLA	SNLS5
Low z	44			
SDSS	0			
SNLS	73			
HST	0			

SNLS 1

- Motley crew of low redshift SN.
- Analysis of first year SNLS data.
- With BAO prior we get $w = -1.023 \pm 0.087$

Table: Evolution of the cosmology sample.

	SNLS 1	SNLS 3	JLA	SNLS5	
Low z	44	123			
SDSS	0	101			
SNLS	73	231			
HST	0	14			

	SNLS 1	SNLS 3	JLA	SNLS5
Low z	44	123		
SDSS	0	101		
SNLS	73	231		
HST	0	14		

SNLS 3

- Bigger SNLS sample.
- Add low redshift surveys.
- Add first SDSS data release.
- With WMAP and BAO prior we get $w = -1.069 \pm 0.7$

Table: Evolution of the cosmology sample.

	SNLS 1	SNLS 3	JLA	SNLS5
Low z	44	123	118	
SDSS	0	101	374	
SNLS	73	231	239	
HST	0	14	9	

JLA

- New calibration.
- Better understanding of systematics.
- With Planck and BAO prior we get $w = -1.027 \pm 0.55$

Table: Evolution of the cosmology sample.

	SNLS 1	SNLS 3	JLA	SNLS5
Low z	44	123	118	~ 210
SDSS	0	101	374	~ 380
SNLS	73	231	239	~ 400
HST	0	14	9	~ 10

	SNLS 1	SNLS 3	JLA	SNLS5
Low z	44	123	118	~ 210
SDSS	0	101	374	~ 380
SNLS	73	231	239	~ 400
HST	0	14	9	~ 10

SNLS 5

- In progress.
- New data alone shaves off $\sim 0.5\%$.
- New training and other improvements could remove another $\sim 0.5\%.$
- No preliminary value on w because analysis is blind.

Current state

- Currently, blind cosmology analysis of full data set underway.
- New training of SALT 2 model.
- Still providing the best measurement of *w* to date.

Current state

- Currently, blind cosmology analysis of full data set underway.
- New training of SALT 2 model.
- Still providing the best measurement of *w* to date.

Outlook

- New probes are maturing and giving ever more precise constraints on *w*. BAO look very promising.
- For SN to remain competitive in 2 generations we need to go to higher redshifts.
- Need space based observations to observe high redshift SN in IR.