Direct Dark Matter Search With The XENON Experiment

Particle Physics and Cosmology

Boris Bauermeister on behalf of the XENON collaboration

Boris.Bauermeister@uni-mainz.de

18 May to 23 May 2014

What do we hunt: (WIMP) Dark Matter

Astrophysical hints for Dark Matter:

- Rotation curves in galaxies
- Newest CMB result from Planck satellite (2013)¹

What is Dark Matter?

- → Known particles are ruled out
- → On the electro-weak scale

WIMP Dark Matter:

→ Weakly Interacting Massive Particles

How to find such a mysterious particle?

- → Direct Dark Matter search with liquid xenon
- → Search for nuclear recoils (WIMP-nucleon interaction)

Xenon as detection medium:

Detection medium: (liquid) xenon

- High density: $\rho = 2.8 \text{ kg/l}$
- High mass number: A = 131 (→ σ ~ A²) for coherent scatter

- Even/odd (stable) isotopes
- Radioactive impurities can be removed (e.g.⁸⁵Kr)

- Increase interaction probability
- Self-shielding properties
 - → Definition of a fiducial volume
- Test Dark Matter models:
 - → Spin dependent analysis
 - → Spin independent analysis
- · Easy to scale up!
 - → Future detector design

Detection principle of a two phase time projection chamber (TPC)

The Xenon Dark Matter Project:

World wide XENON Collaboration

The XENON100 Time Projection Chamber (TPC)

XENON100 Time Projection Chamber

242 (1") Photomultiplier (PMTs):

- → 98 PMTs on the top array
- → 80 PMTs on the bottom array
- → 64 PMTs in the veto

Top PMT array

161 kg liquid xenon (-91°C) Detection material:

→ Target mass: ~ 62 kg

TPC: 30 cm height / 30 cm diameter

Low radioactive All used materials:

Multilayer passive shield: Cu, PE, Pb, H₂O

XENON100 Result in 2012 – Spin Independent:

<u>During 2011/2012:</u> 225 live days of data

Two observed events are not enough!

- Events within benchmark region for dark matter search (green box)
- No excess due to Dark Matter signal (p-value: >= 5 %)
- Background fluctuation to two events is possible by 26.4%

Exclusion limit of 225 days of Dark Matter data taking

Lowest WIMP-Nucleon Cross-section¹: $m_{\chi} = 55 \text{ GeV/c}^2$ $\sigma < 2.0 \times 10^{-45} \text{ cm}^2 (90 \% \text{ C.L.})$

1) E. Aprile et al. Phys. Rev. Lett. 109, 181301 (2012)

XENON100 Result – Spin Dependent:

Odd xenon isotopes:

- ¹²⁹Xe (26.2 %)
- ¹³¹Xe (21.8 %)
 - → WIMP Dark Matter could couple spin dependent!

WIMP-Neutron cross-section (Menendez):^{1, 2} $m_{\chi} = 45 \text{ GeV/c}^2$ $\sigma < 3.5 \times 10^{-40} \text{ cm}^2$

- 1) E. Aprile, M. Alfonsi, K. Arisaka et al, Phys. Rev. D 88, 012006 (2013)
- 2) J. Menendez, D. Gazit, and A. Schwenk, Phys.Rev. D86, 103511 (2012), arXiv:1208.1094

XENON100 Result 225 live days – Axion Dark Matter:

Axions and axion-like particles (ALPs) couple:

Photons (g_{Ay})
 Electrons (g_{Ae})
 Nuclei (g_{AN})
 Scattered electrons

Test different Axion/ALP models:

- → Solar axions
- → Galactic ALPs

Careful data selection:

→ Select electronic recoil band

E. Aprile, F. Agostini, M. Alfonsi et al. preprint: arxiv:1404.1455

XENON100 Result 225 live days – Axion Dark Matter:

Solar axions with m < 1 keV/c²: \rightarrow g_{Ae} > 7.7 x 10⁻¹² excluded (90 % C.L.)

Galactic axions with
$$m = 5 - 10 \text{ keV/c}^2$$
:
 $\rightarrow g_{Ae} > 1 \times 10^{-12} \text{ excluded (90 % C.L.)}$

(Assuming ALPs constitute all of the galactic Dark Matter.)

AmBe souce/MC simulation: Data matching

→ Neutron calibration of XENON100 with AmBe

<u>Idea:</u> Get a proper description of XENON100 by an improved simulation and test

Ingredients:

- Measured AmBe source (160 +- 4 n/s) at the PTB/Germany
- Complete XENON100 description (detector + shield)
- Q_y, Threshold, detection resolution and acceptance (S1) from XENON100 detector

How to do (I):

- \rightarrow Take direct measured L_{eff}
- → Reproduce S2 spectrum
- \rightarrow Best Fit Q_y

Conversion between $Q_y \leftrightarrow keV_{nr}$

AmBe souce/MC simulation: Data matching

How to do (II):

- \rightarrow Use Best Fit Q_v
- → Reproduce S1 spectrum
- \rightarrow Get a new L_{eff}

- Fit the whole spectrum down to 2 PE (~5 keV)
- L_{eff} from best fit matches the previous 'direct' measurements
- Results of XENON100 remain unchanged using this $L_{\rm eff}$

We need more! – XENON1T:

No WIMP Dark Matter found yet!

Increase the fiducial volume by building a bigger TPC and cryostat!

XENON100 → **XENON1T** → *XENONnT*

XENON1T: TPC

- → Projected with ~ 3 tons LXe!
 - Inside TPC: ~ 2 tons
 - Fiducial volume: ~ 1 ton
 - Drift length (electrons): 1 m
 - Driftfield up to 100 keV

- 248 of 3" R11410-21 PMTs1
- Low background + high QE (36 %)
- → Background reduction:
 - Careful material selection/screening for cryostat and TPC
 - Reduced intrinsic background: 85Kr and 222Rn
 - Active water cherenkov muon veto

100x lower background!

→ Goal: < 1 events/y

Summary:

XENON100

- → Well tested and detailed understanding of the detector
- → Ready to test Dark Matter models
 - Lowest exclusion limit in 2012 (SI)
 - Lowest exclusion limit in 2013 for SD (neutrons)
 - First results for Axions/ALPs interactions in XENON100
 - AmBe souce/MC matching results
 - Annual modulation results in XENON100 coming soon
 - Develop and test alternative analysis methods, e.g. Bayesian approach

XENON1T

- → XENON1T is under construction!
- → Water tank construction already finished
 - Suppress background by a factor 100
 - Increase detection probability by a larger amount of xenon
 - Active muon veto
 - Sensitive to 2x10⁻⁴⁷cm²
 - First data in 2015

The next level XENON - TPC for Dark Matter detection is coming!

XENONnT

- → Future update for XENON1T
- → Sensitive to 2x10⁻⁴⁸cm²

Backup: Background in XENON100

- Detector design: Careful material selection
- Low level 222 Rn (62.9 µBy/kg and 85 Kr (19.4 ppt)
- Different calibrations are done during the operation

E. Aprile et al. Phys. Rev. Lett. 109, 181301 (2012)

Backup: XENON100: 225 live days data

Data in flatten space after a cut based analysis

Nuclear Recoil

Background expectation in total*: 1.0 ± 0.2

- Electronic Recon Dark Matter Data
 - → Benchmark region (yellow box)
- Events distributed in the TPC
 - → Fiducial volume (34 kg)

Event distribution in flattened space

Unblinding¹: Two events observed!

Profile Likelihood² analysis to "test events"

- 1) E. Aprile et al. Phys. Rev. Lett. 109, 181301 (2012)
- 2) E. Aprile et al. (XENON100), Phys. Rev. D 84, 052003 (2011)
- * Benchmark region and given exposure

Backup: Axion Dark Matter

Solar axions/ALPs:

- · Production in the sun
- Compton scattering
- · axio-recombination
- axio-deexcitation

- non-thermal production mechanism in the early universe
- Dark Matter (part of)

Axions and ALPs couple by axio-electric effect!

→ Axion/ALPs are "absorbed"

$\sigma_{Ae} = \sigma_{pe}(E_A) \underbrace{\frac{g_{Ae}{}^2}{\beta_A} \frac{3E_A{}^2}{16\pi \; \alpha_{em} \; m_e{}^2}}_{\text{electron mass}} \left(1 - \frac{\beta_A^{2/3}}{3}\right)$

Solar axions/ALPs:

Axion flux ∞ g^2_{Ae}

$$\frac{dR^{solar}}{dE_R} \propto g_{Ae}^4$$

Galactic ALPs:

$$\phi_{ALP} = \frac{c \beta \rho_{DM}}{m_{ALP}}$$

$$\left| \frac{dR^{DM}}{dm_{ALP}} \propto g_{Ae}^2 \right|$$

Backup: Axion Dark Matter

Event distributions: Solar axions & galactic ALPs

Expected signal of various ALP masses for $g_{Ae} =$

Backup: Intrinsic Background in XENON1T

²²²Rn impurity:

- \rightarrow Removal system to achieve < 1 µBq/kg
- → Absorbtion tower (Alternatives are

85 Kr impurity:

- → Cryogenic distillation colum for Kr removal
- → Removal system to archive ^{nat}Kr/Xe < 1 ppt
- → Aim: 3 kg/h xenon (8.7 SLP
- → Fully integrated in XENON1

Cryogenic distillation in Heidelberg/Germany

Backup: XENON1T - Watertank: Overview and Status

Water tank facts:

- 10 m height
- 10 m in diameter
- 84 PMTs
- Reflective foil inside the water tank

Construction finished!
&
Reflective foil is clad
to the roof

Next:

- Installation of the PMTs
- Cladding the wall and bottom
- Installation of the cryostat and the TPC
- First test in fall 2015

XENON100: Annual modulation

Detection material:

~ 250 kg highly radio-pure NaI (TI) crystals

Is there also an annual modulation in XENON100?

- → 225 live days of data
- → Data taking period: > 1 year
- → Analysis threshold of XENON100 is lower!

1) R. Bernabei, P. Belli, A. Di Marco, "DAMA/LIBRA results and perspectives", preprint: arXiv:1301.6243

Galactic Halo (2 - 6 keV)

What comes next? The future of the XENON DARK MATTER Project

XENON1T can be updated:

- More xenon
- Bigger TPC in the same cryostat

XENONnT

Sensitivity Goal:

$$\sigma = 2 \times 10^{-48} \text{ cm}^2$$