Search for a new dark boson in meson decays

Damian Pszczel National Centre for Nuclear Research (Warsaw) Uppsala University

 \bigcirc

UPPSALA UNIVERSITET

New boson hypothesis

- Hardly explainable astrophysical observations
 - e⁺ and/or e⁻ excess observed (PAMELA, ATIC, HESS)
 - 511 keV gamma-ray signal from the Galactic center: SPI-INTEGRAL [Nature, Vol 451,10/01/2008]

2

- Annihilation of dark matter via U boson (Fayet, Boehm)
- KTeV collaboration has measured: [Phys.Rev.D 75,012005, 2007]
 BR (π⁰ → e⁺e⁻) = (7.49 ± 0.29 ± 0.25) · 10⁻⁸

which exceeds SM based theoretical predictions (Dorokhov et al.) by 3.3σ

[Phys. Rev. D 75, 114007]

[arXiv:0704.3498]

New models beyond the SM
Vector boson (dark photon):
Possible signature in Dalitz decays of mesons

Other interesting channels: $\eta \rightarrow \gamma U (\rightarrow \pi^{0} \gamma)$ $\eta \rightarrow \pi^{0} U (\rightarrow e^{+}e^{-})$

$$\mathbf{U} \sim \mathbf{\tilde{c}}$$

WASA-at-COSY experiment

FZJ

- Wide Angle Shower Apparatus
- Cooler Synchrotron located at Forschungszentrum Jülich
- Designed to study light meson production and decays in hadronic interactions
- p/d beams up to 3.7 GeV/c (stochastic and e^- cooling)
- High density p/d pellet target
- Internal experiment

Central Detector: 20°-165° polar angle acceptance. Measurement of charged and neutral decay products Forward Detector : 3°-18° polar angle acceptance. Measurement of forwardscattered hadrons

Search for a new boson in meson Dalitz decays

Dalitz decays of mesons

 $\eta/\pi^0 \rightarrow \gamma U (\rightarrow e^+e^-)$ has the same topology as the Dalitz decay!

Exclusion plot for the coupling parameter \mathbb{E}^2 vs Mass of Dark Boson

Data: n Dalitz decay

• $2.5 \cdot 10^8$ η mesons produced in pp @ 1.4 GeV

→ Data collected in the beamtime period : January - March 2012

- up to higher IM(e^+e^-) than in $\pi^0 \rightarrow e^+e^-\gamma$ case
- Hardware event selection trigger (two clusters in CD above threshold and two tracks in FD)
- Software event selection "preselection" and cuts
 - First step : rough conditions (charges, multiplicities etc...)
 - Second step : "cuts" = imposed selection criteria to maximize signal/background ratio

Background: photon pair production (conversion) Invariant mass of e+e- spectra

Conversion cut

Identification plot cut: π⁺π⁻ vs e⁺e⁻ Energy deposit vs momentum*sign(charge)

Missing energy vs Missing Mass cut

Missing mass of two protons vs invariant mass of e+e- pair - CUTS

Data: η Dalitz decay

- Data analysis in progress
- $2.5 \cdot 10^8$ η mesons produced in pp @ 1.4 GeV

Data: η Dalitz decay e+e- invariant mass [GeV/c²]

Preliminary

Data: η Dalitz decay e+e- invariant mass [GeV/c²]

Data: n Dalitz decay

- We expect around 20 000 η Dalitz events in full data set
- In comparison PDG data are based on the following statistics:

Summary and outlook

- Upper limit established by WASA-at-COSY collaboration in π⁰ Dalitz decay for dark photon-photon coupling parameter: E² < 5 · 10⁻⁶ @ 90% C.L.
- Upper limit established by WASA-at-COSY collaboration in $\eta \rightarrow e^+e^-$ decay:

 $BR(\eta \rightarrow e^+e^-) < 4.6 \cdot 10^{-6} @ CL 90\%$

Analysis of η Dalitz channel in progress based on
 ~ 2.5 · 10⁸ η mesons produced in pp collisions @ 1.4 GeV

• Possible analysis of other channels:

• $\eta \rightarrow e^+e^ \eta \rightarrow \pi^0 e^+e^ \eta \rightarrow \pi^0 \gamma \gamma$

Simulation • $BR(\eta \rightarrow \gamma U) = 10^{-4}$ • Assumed $BR(U \rightarrow e^+e^-) = 1 \& U$ width ~ 24 MeV

