Two Higgs doublet model with $U(1)_{H}$ Higgs symmetry and dark matter

Collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya U.)

Based on JHEP 1401, 016; arXiv:1405.2138

26th Rencontres de Blois May 21, 2014

Two Higgs doublet model

- Many high-energy models predict extra Higgs doublets.
 - SUSY, GUT, flavor symmetric models, etc.
- Two Higgs doublet model could be an effective theory of a high-energy theory.
- Two (or multi) Higgs doublet model itself is interesting.
 - Higgs physics (heavy Higgs, pseudoscalar, charged Higgs physics)
 - dark matter physics (one of Higgs scalar or extra fermions could be CDM.)

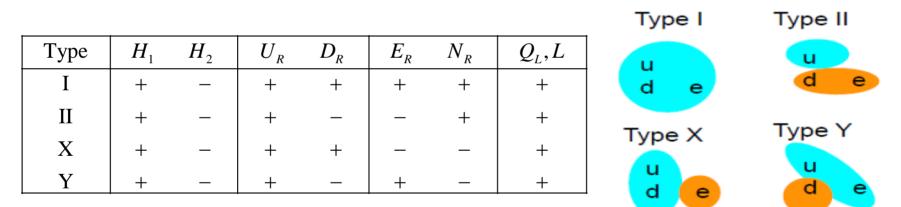
Ma, PRD73; Barbieri, Hall, Rychkov, PRD74

- baryon asymmetry of the Universe Shu, Zhang, PRL111
- neutrino mass generation Kanemura, Matsui, Sugiyama, PLB727

- can resolve experimental anomalies (top A_{FB} at Tevatron, $B \rightarrow D(*) Tv$ at BABAR) Ko,Omura,Yu,EPJC73;JHEP1303 2

2HDM with Z₂ symmetry (2HDMwZ₂)

- One of the simplest models to extend the SM Higgs sector.
- In general, flavor changing neutral currents (FCNCs) appear.
- A simple way to avoid the FCNC problem is to assign ad hoc Z_2 symmetry.



Fermions of same electric charges get their masses from one Higgs VEV.

$$\mathcal{L} = \overline{L}_i (y_{1ij}^E H_1 + y_{2ij}^E H_2) E_{Rj} + \text{H.c.} \quad \text{or vice versa}$$

NO FCNC at tree level.

Generic problems of 2HDM

- It is well known that discrete symmetry could generate a domain wall problem when it is spontaneously broken.
- Usually the Z₂ symmetry is assumed to be broken softly by a dim-2 operator, $H_1^{\dagger}H_2$ term.

The softly broken Z₂ symmetric 2HDM potential $V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.]$

• the origin of the softly breaking term?

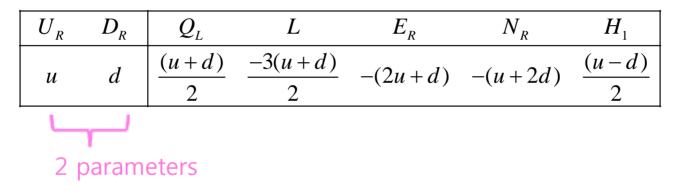
 Z_2 symmetry in 2HDM can be replaced by new U(1)_H symmetry associated with Higgs flavors.

Type-I 2HDM

• Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_H$ without extra fermions except RH neutrinos.



• In general, extra fermions are required in order to cancel gauge anomaly.

 \rightarrow one of extra fermions can be a candidate for the cold dark matter.

Type-I 2HDM

Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_{H}$ without no extra fermions except RH neutrinos.

U_{R}	D_{R}	$Q_{\scriptscriptstyle R}$	L	E_{R}	N_{R}	H_{1}	Туре
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$	
0	0	0	0	0	0	0	$h_2 \neq 0$
1/3	1/3	1/3	-1	-1	-1	0	$U(1)_{B-L}$
1	-1	0	0	-1	1	1	$U(1)_R$
2/3	-1/3	1/6	-1/2	-1	0	1/2	$U(1)_{\gamma}$

Ko,Omura,Yu, PLB717,202(2013)

SM fermions are U(1)_H singlets.
Z_H is fermiophobic and Higgphilic.

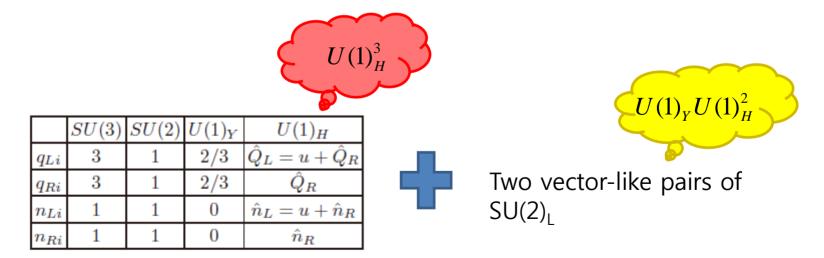
Type-II 2HDM

• H₁ couples to the up-type fermions, while H₂ couples to the down-type fermions.

 $V_{y} = y_{ij}^{U} \overline{Q}_{Li} \widetilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{2} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{2} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \widetilde{H}_{1} N_{Rj}$

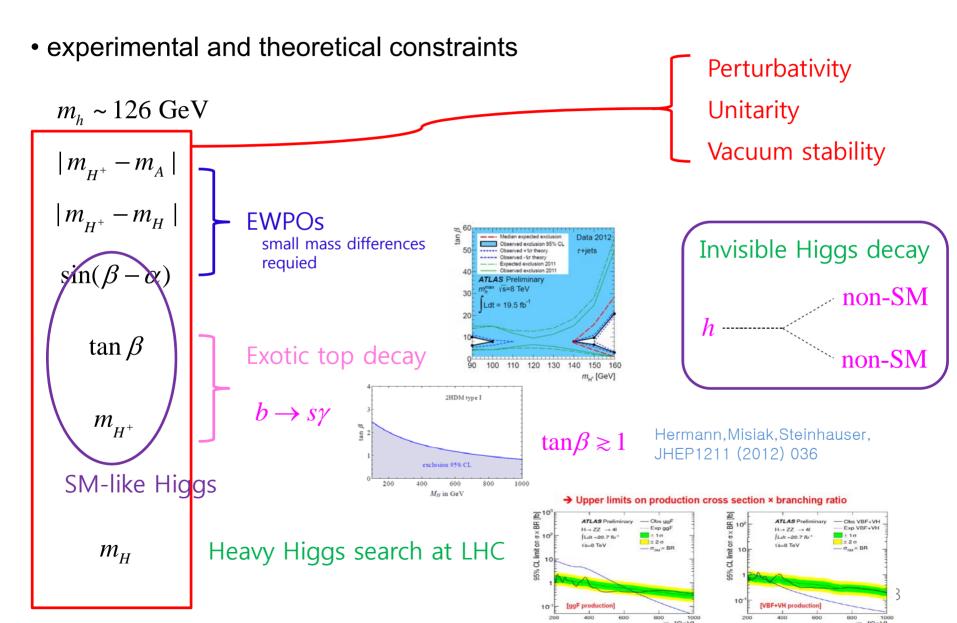
U_R	D_{R}	$Q_{\scriptscriptstyle L}$	L	E_{R}	N_{R}	H_{1}	H_2
и	0	0	0	0	U	И	0

• Requires extra chiral fermions for cancellation of gauge anomaly.



One of extra fermions can be a candidate for CDM.

Constraints



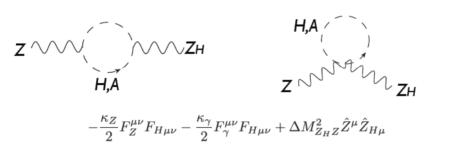
Z-Z_H mixing

• tree-level mixing (v_i≠0)

$$\Delta M_{ZZH}^2 = -\frac{\hat{M}_Z}{v}g_H \sum_{i=1}^2 q_{H_i} v_i^2.$$

$$\tan 2\xi = \frac{2\Delta M_{ZZ_H}^2}{\hat{M}_{Z_H}^2 - \hat{M}_Z^2}$$

• loop-level mixing ($v_1=0, v_2\neq 0$)



$$\begin{split} \kappa_Z &= \frac{q_H g_H e c_W}{16 \pi^2 s_W} \left\{ \frac{1}{3} \ln \left(\frac{m_A^2}{m_{H^+}^2} \right) - \frac{1}{6} \frac{m_A^2 - m_H^2}{m_A^2} \right\},\\ \kappa_\gamma &= \frac{q_H g_H e}{16 \pi^2} \left\{ \frac{1}{3} \ln \left(\frac{m_A^2}{m_{H^+}^2} \right) - \frac{1}{6} \frac{m_A^2 - m_H^2}{m_A^2} \right\},\\ \Delta M_{Z_H Z}^2 &= -\frac{q_H g_H e}{32 \pi^2 s_W c_W} (m_A^2 - m_H^2). \end{split}$$

The mixing can appear because of $SU(2)_L \times U(1)_Y$ breaking effects.

- collider bound depends on the $U(1)_{H}$ charge assignment.
- In the fermiophobic Z_H case, the Z_H boson can be produced through the Z- Z_H mixing and the bound for the mixing angle is

 $\sin \xi \leq O(10^{-2}) \sim O(10^{-3})$

Inert Doublet Model (IDMwZ₂)

- a 2HDM ~ one of the simplest extension
- One of Higgs doublets does not develop VEV and exact Z_2 symmetry is imposed.
- The new Higgs doublet does not participate in the EW symmetry breaking.
- Under the Z_2 symmetry, SM particles are even, but the new Higgs doublet is odd.
- Viable DM candidate

$$H_{1} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}} (H) + i A \end{pmatrix}, \quad H_{2} = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} (v + h) + i G^{0} \end{pmatrix}$$

DM candidates SM-like Higgs

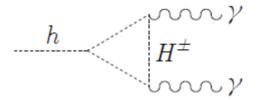
Inert Doublet Model (IDMwZ₂)

• CP-conserving potential

forbidden by the Z₂ symmetry

$$V = \mu_1 (H_1^{\dagger} H_1) + \mu_2 (H_2^{\dagger} H_2) - \mu_{12} (H_1^{\dagger} H_2 + \text{h.c.}) + \frac{\lambda_1}{2} (H_1^{\dagger} H_1)^2 + \frac{\lambda_2}{2} (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \{ (H_1^{\dagger} H_2)^2 + h.c. \}.$$

- Type-I Yukawa interactions ~ only H_2 couples to the SM fermions.
- The h decay to two photons receives additional contribution through charged Higgs loop.



• H,A,H^{\pm} ~ do not couple to SM fermions at tree level.

- We replace the Z_2 symmetry by U(1) gauge symmetry.
- A SM-singlet Φ has to be added.
- Without Φ , Z_H boson becomes massless.

$$V = (m_1^2 + \tilde{\lambda}_1 | \Phi |^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 | \Phi |^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + h.c.)$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 | H_1^{\dagger}H_2 |^2$
+ $\frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 | \Phi |^2 + \lambda_{\Phi} | \Phi |^4$

- Φ breaks the U(1)_H symmetry while H₂ breaks the EW symmetry.
- The remnant symmetry of $U(1)_{H}$ is the origin of the exact Z_2 symmetry.

- We replace the Z_2 symmetry by U(1) gauge symmetry.
- A SM-singlet Φ has to be added.
- Without Φ , Z_H boson becomes massless.

forbidden by the Z₂ symmetry

$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + h.c.)$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2$
+ $\frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$
forbidden by the U(1)_H symmetry (q_{H2}=0,q_{H1}≠0)

- Φ breaks the U(1)_H symmetry while H₂ breaks the EW symmetry.
- The remnant symmetry of $U(1)_{H}$ is the origin of the exact Z_2 symmetry.

• IDM + SM-singlet Φ .

forbidden by the Z_2 symmetry

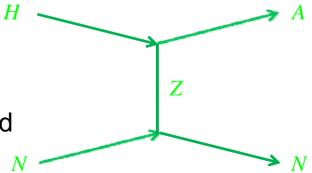
$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + \text{h.c.}) + \frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2 + \frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$$

forbidden by the U(1)_H symmetry $(q_{H_2}=0,q_{H_1}\neq 0)$

• Without λ_5 , H and A are degenerate.

$$m_A = \sqrt{m_H^2 - \lambda_5 v^2}$$

• Direct searches for DM at XENON100 and LUX exclude this degenerate case.



• IDM + SM-singlet Φ .

forbidden by the Z_2 symmetry

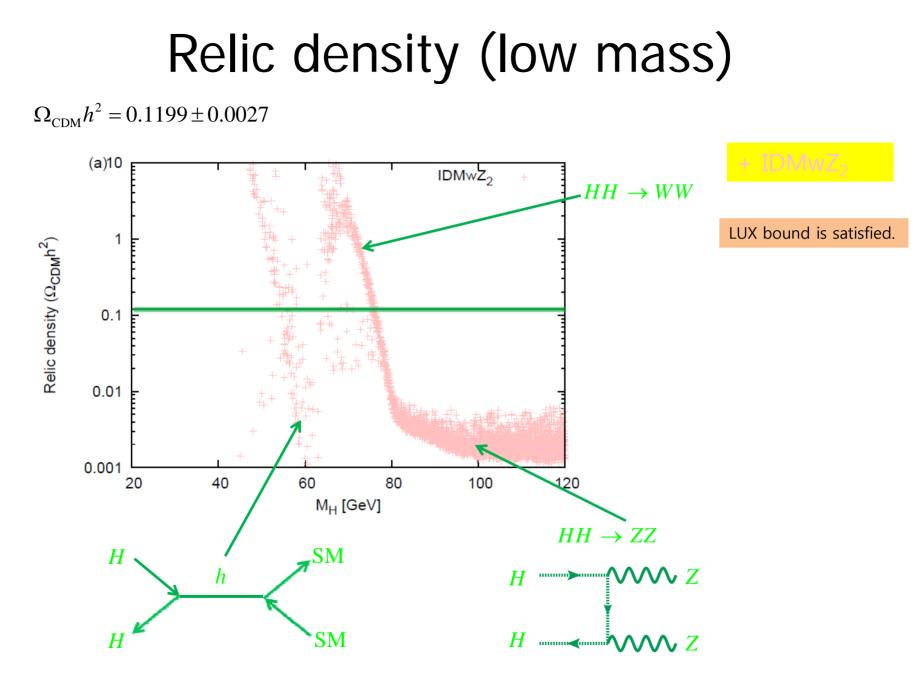
$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + h.c.)$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2$
+ $\{c_l \left(\frac{\Phi}{\Lambda}\right)^l (H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$

- The λ_5 term can effectively be generated by a higher-dimensional operator.

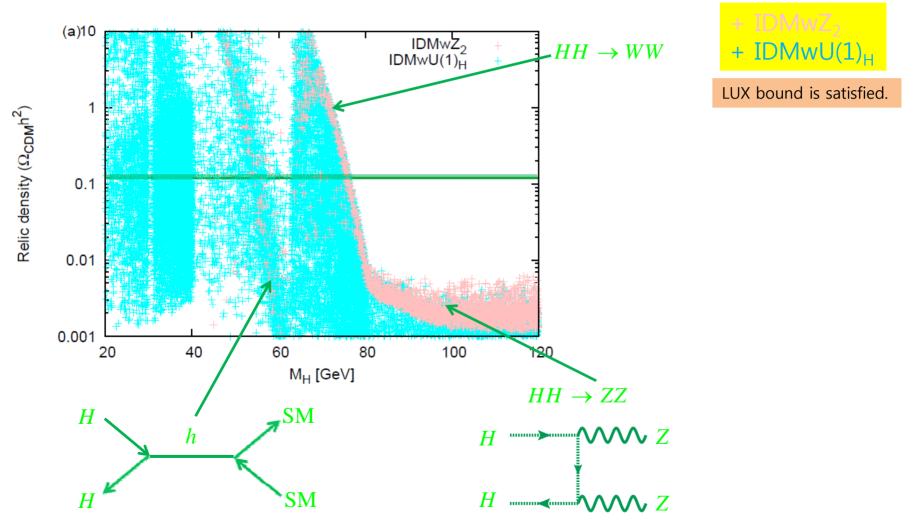
• It could be realized by introducing a singlet S charged under U(1)_H with $q_S = q_{H_1}$.

$$V_{\Phi}(|\Phi|^{2},|S|^{2}) + V_{H}(H_{i},H_{i}^{\dagger}) + \lambda_{S}(\Phi)S^{2} + \lambda_{H}(S)H_{1}^{\dagger}H_{2} + h.c..$$
$$\lambda_{H} = \lambda_{H}^{0}S \qquad \lambda_{5} \sim \frac{(\lambda_{H}^{0})^{2}}{2} \frac{\Delta m^{2}}{m_{Re(S)}^{2}m_{Im(S)}^{2}}, \qquad \begin{array}{c} H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ S \\ S \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ S \\ H_{2} \end{array} \qquad \begin{array}{c} H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ S \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ S \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ S \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array} \qquad \begin{array}{c} \langle \Phi \rangle \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{1}^{\dagger} \\ H_{2} \end{array}$$



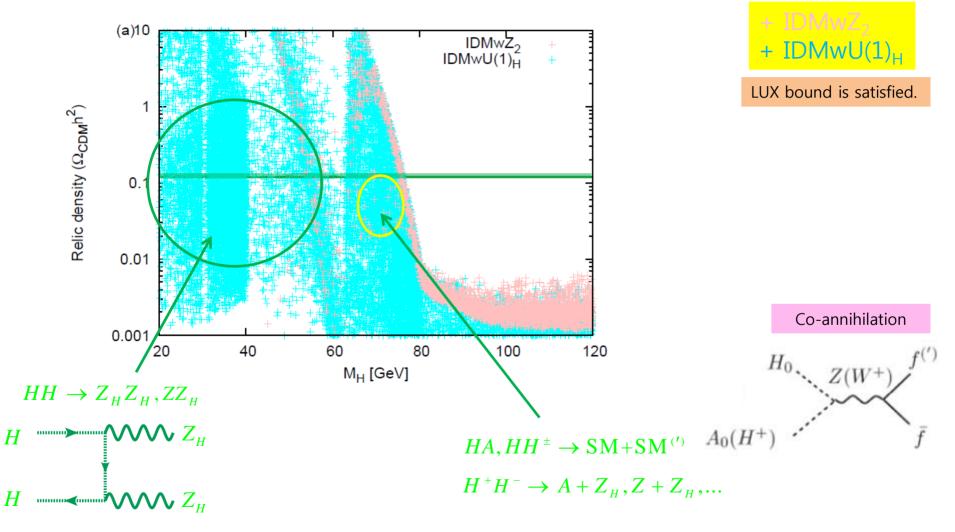
Relic density (low mass)

 $\Omega_{\rm CDM} h^2 = 0.1199 \pm 0.0027$

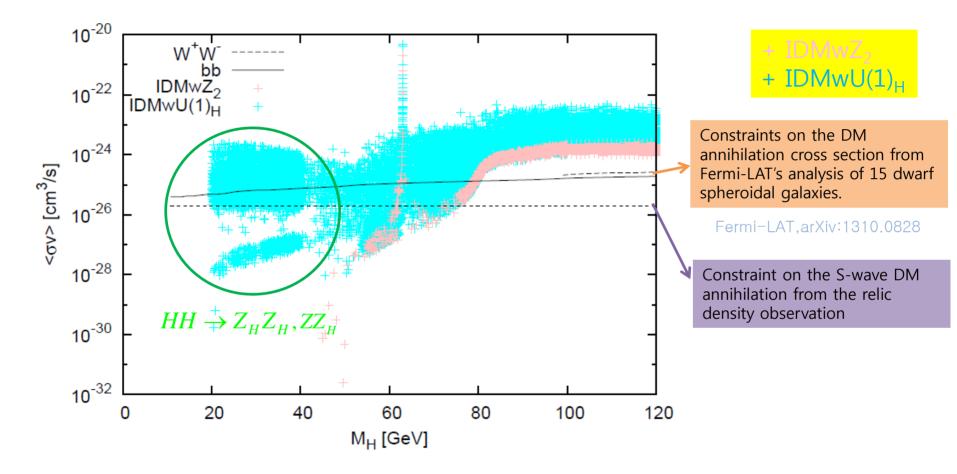


Relic density (low mass)

 $\Omega_{\rm CDM} h^2 = 0.1199 \pm 0.0027$

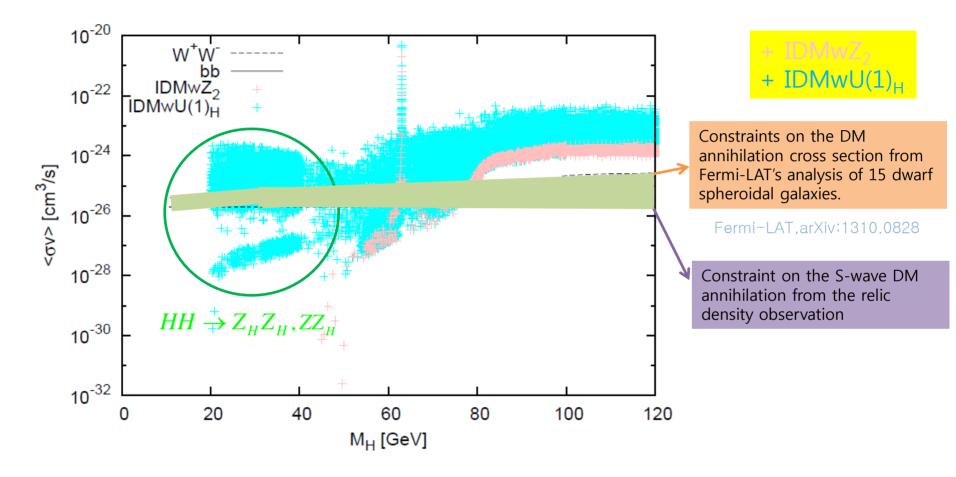


Indirect searches (low mass)



• All points satisfy constraints from the relic density observation and LUX experiments.

Indirect searches (low mass)



• But, indirect DM signals depend on the decay patterns of produced particles from annihilation or decay of DMs.

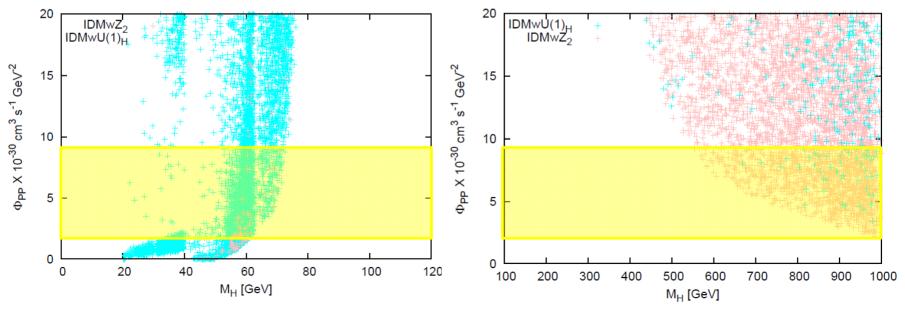
Gamma ray flux from DM annihilation

 Dwarf spheroidal galaxies are excellent targets to search for annihilating DM signatures because of DM-dominant nature without astrophysical backgrounds like hot gas.

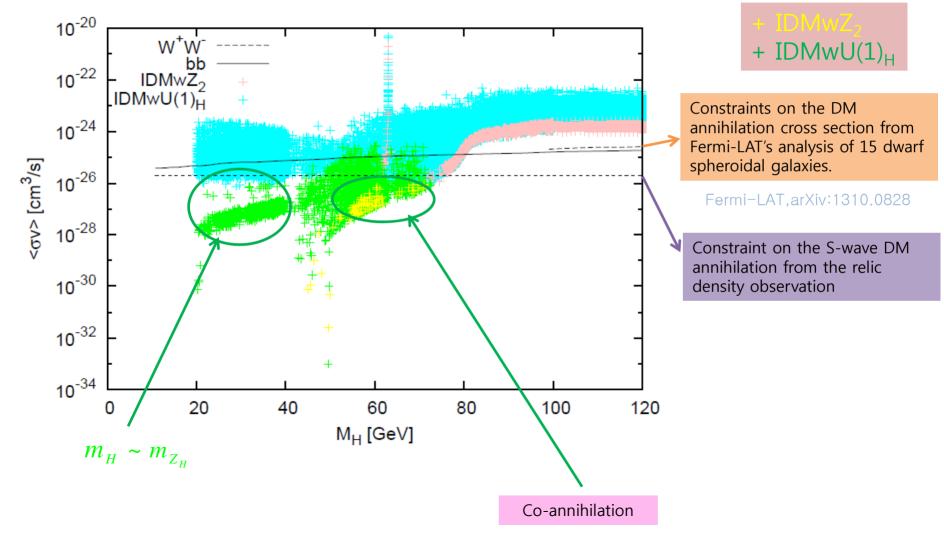
$$\phi_s(\Delta\Omega) = \underbrace{\frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \int_{E_{\rm min}}^{E_{\rm max}} \underbrace{\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma}}_{\Phi_{\rm PP}} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(r) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J\text{-factor}} \cdot \underbrace{\int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(r) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J\text{-factor}} \cdot \underbrace{\int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(r) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J\text{-factor}} \cdot \underbrace{\int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}}$$

A 95% upper bound is $\Phi_{PP} = 5.0^{+4.3}_{-4.5} \times 10^{-30} \text{ cm}^3 \text{s}^{-1} \text{GeV}^{-2}$

Geringer-Sameth, Koushiappas, PRL107

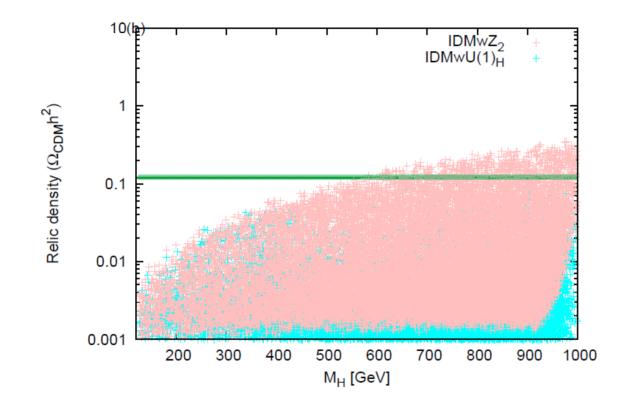


Indirect searches (low mass)

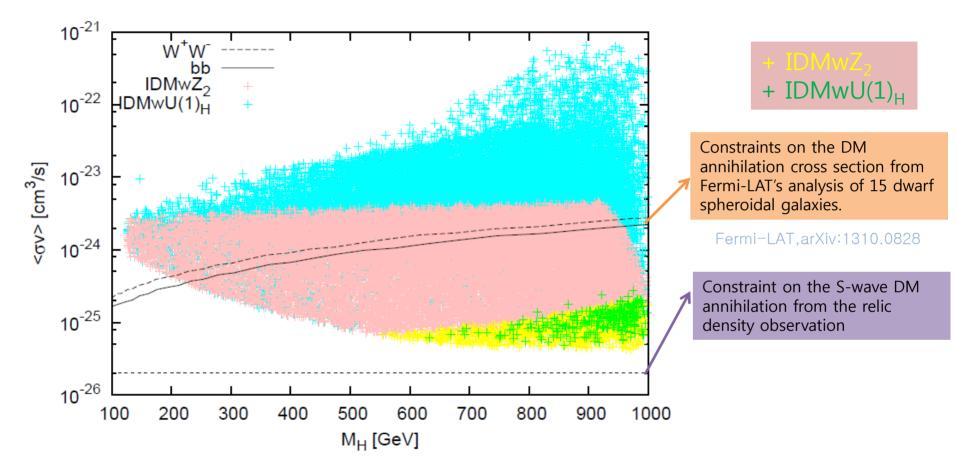


Relic density (high mass)

 $\Omega_{\rm CDM} h^2 = 0.1199 \pm 0.0027$



Indirect searches (high mass)



Conclusions

• 2HDM may be an effective theory of a high-energy theory and useful to test the underlying theory.

• 2HDM can easily be extended to a gauged model and the U(1) gauge symmetry could be the origin of Z_2 symmetry.

• The U(1) extension to inert doublet model could introduce dark matter candidates whose stability are guaranteed by the remnant symmetry of $U(1)_{\rm H}$.

• In type-I, a light CDM scenario is possible in the IDMwU(1)_H.

Thank you for your attention.

Back up

Higgs Potential

• in the ordinary 2HDM with Z₂ symmetry

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.].$$
not invariant under U(1)_H

• in the 2HDM with U(1)_H, we include an extra singlet scalar Φ , which makes Z_H heavy.

$$\begin{split} V &= \hat{m}_{1}^{2} (|\Phi|^{2}) H_{1}^{\dagger} H_{1} + \hat{m}_{2}^{2} (|\Phi|^{2}) H_{2}^{\dagger} H_{2} - \begin{pmatrix} m_{3}^{2}(\Phi) H_{1}^{\dagger} H_{2} + h.c. \end{pmatrix} \leftarrow & H_{1}^{\dagger} H_{2} \Phi \\ &+ \frac{\lambda_{1}}{2} (H_{1}^{\dagger} H_{1})^{2} + \frac{\lambda_{2}}{2} (H_{2}^{\dagger} H_{2})^{2} + \lambda_{3} (H_{1}^{\dagger} H_{1}) (H_{2}^{\dagger} H_{2}) + \lambda_{4} |H_{1}^{\dagger} H_{2}|^{2} & \text{invariant under U(1)}_{H_{2}^{\dagger}} H_{2} + m_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4}. & \text{no } \lambda 5 \text{ terms!} \end{split}$$

• neutral Higgs $\begin{pmatrix}
h_{\Phi} \\
h_{1} \\
h_{2}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 \cos \alpha - \sin \alpha \\
0 \sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{1} & 0 - \sin \alpha_{1} \\
0 & 1 & 0 \\
\sin \alpha_{1} & 0 & \cos \alpha_{1}
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{2} - \sin \alpha_{2} & 0 \\
\sin \alpha_{2} & \cos \alpha_{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\widetilde{h} \\
H \\
h
\end{pmatrix}$

a pair of charged Higgs + 1 pseudoscalar Higgs + 3 neutral Higgs bosons