Fermilab

Measurements of $\sin^2\theta_w$ and indirect measurments of M_w at the Tevatron

Arie Bodek, University of Rochester

On behalf of the CDF and D0 Collaborations Blois2014: 26th Rencontres de Blois. Wednesday, May 21, 2014 14:00-14:20 Room III Session: QCD+HF+EW

Fermilab

2013: Long standing tension between LEP/SLD measurements of $sin^2\theta_{eff}$ ATLAS, e CC ATLAS $e^+e^- + \mu^+\mu^- 4.8 \text{ fb}^{-1}$ ATLAS, e CF (EPS 2013) 0.22970+-0.00110 ATLAS, µ ATLAS combined CMS µ⁺µ⁻ 1.1 fb⁻¹ PRD84 112002 (2011) CMS 0.22870 + -0.00210D0 CDF D0 e⁺e⁻ 5.0 fb⁻¹ PRD 84, 012007 (2011) LEP, A^{0,b}_{FB} 0.23221 ± 0.00029 0 0.23090 + -0.00100SLD, A 0.23098 ± 0.00026 OCDF e⁺e⁻ 2.1 fb⁻¹ LEP+SLC Phys. Rev. D 88, 072002 2013) 0.23280+-0.00110 PDG Fit 0.225 0.23 0.235 0.245 0.22 0.24 Tension between LEP and SLD LEP SLD difference is 0.00122 New precision measurements of $sin^2\theta_{eff}$ could help resolve this diff.

In hadron colliders: A_{FB} for e^+e^- or $\mu^+\mu^-$ pairs in the Z boson Region is sensitive to $\sin^2\theta_{eff}^{lept}(M)$ where $M=M_{\mu+\mu}$.

We define for short: $\sin^2\theta_{eff} \equiv \sin^2\theta_{eff} |ept(M_z)$ (at the Z pole) $\sin^2\theta_{eff} \approx 1.037 \cdot \sin^2\theta_W$ [ZFITTER $\kappa_e(\sin^2\theta_W, M_z)$ form factor] $\sin^2\theta_w = 1 - M_w^2 / M_z^2$

Direct and indirect measurements of M_w in SM

The new key element in the indirect extraction or inference of M_w from A_{FB} in the Standard Model is that the Higgs mass is now known. Therefore we can measure both $\sin^2\theta_{eff}$ AND the on-shell $\sin^2\theta_w = 1 - M_w^2 / M_z^2$ (we use $m_H = 125 \text{ GeV}$).

An indirect measurement of $M_{\rm w}$ is done by measuring the on-shell ${\rm Sin}^2 \theta_{\rm w}$ and using the SM relation

$$\sin^2 \Theta_w = 1 - M_w^2 / M_z^2$$

A error of ± 0.00030 in $\sin^2\theta_w$ is equivalent to an indirect measurement of M_w to a precision of ± 15 MeV

W mass provides a stringent test of the SM. Within SM we can measure the W mass both directly and indirectly. They should agree.

Tevatron measurements of $sin^2\theta_{\rm eff}$, $sin^2\theta_{\rm w}$ and indirect measurments of $M_{\rm w}$.

Two New Results in 2014

A: CDF Phys. Rev D. 89, 072005 (2014) Run II 9 $fb^{-1} \mu^+\mu^-$ Reports three measurements with statistical errors of $sin^2\Theta_{eff}$ (± 0.00090), $sin^2\Theta_w$ (± 0.0008), M_w ^{indirect} (±44 MeV)

B: D0 note 6426-conf (2014) Run II 9.7 fb⁻¹ e^+e^- . Reports $sin^2\theta_{eff}$ (± 0.00042) statistical error (preliminary)

C: CDF: Expected Fall 2014 full Run II data set 9.7 fb⁻¹ e⁺e⁻ will have three measurements with statistical errors of sin²θ_{eff} (± 0.00044), sin²θ_w (± 0.00040) and Mw (indirect) (±22 MeV)

Which means that a measurement of M_w (indirect) with the combined CDF/D0 9 fb⁻¹ run II data would have a statistical error of ±15 MeV, which is equal to the ±15 MeV error in average of all world measurements of M_w (direct) In addition, it could address the LEP-SLD Difference. LEP SLD difference is 0.00122

Arie Bodek, Blois 2014

🗲 Fermilab 💽

 $\frac{dN}{d\Omega} \propto (1 + \cos^2 \vartheta) +$ $A_0 \frac{1}{2} \left(1 - 3\cos^2 \vartheta\right) +$ $A_1 \sin 2\vartheta \cos \varphi +$ $A_2 \frac{1}{2} \sin^2 \vartheta \cos 2\varphi +$ $A_3 \sin \vartheta \cos \varphi +$ $A_4 \cos \vartheta +$ $A_5 \sin^2 \vartheta \sin 2\varphi +$ $A_6 \sin 2\vartheta \sin \varphi +$ $A_7 \sin \vartheta \sin \varphi$.

6

Terms in boxes are zero when integrating over ϕ , and we get

 $(1+\cos^2\theta) + A_0(M,P_T) (1-3\cos^2\theta)/2$ + *A*₄ cosθ

For dileptons with a P_{τ} , the change in the **cos** θ distribution in the Collins-Soper frame is well understood. CDF has measured it, and data agrees with POWHEG QCD prediction. It is accounted for in the analysis and does not have much impact to the results.

FIG. 2. The typical behavior of $A_{\rm fb}$ as a function of the lepton-pair mass. The vertical line is at $M = M_Z$.

Note that A_{FB} is not Zero at the Z pole. Most of the sensitivity to $\sin^2\theta_{eff}$ is at the Z pole.

CDF measurement published in 2014. Phys. Rev D. 89, 072005 (2014) full Run II data set 9 fb⁻¹ μ⁺μ⁻

Analysis uses three new innovations which are essential:

1st innovation:

Full ZFITTER EW radiative corrections, Enhanced Born Approximation (EBA), include full complex form factors (implemented private versions of RESBOS, POWHEG, and LO) CDF: Phys. Rev. D 88, 072002 (2013) Appendix A' arXiv:1307.0770v3 [hep-ex]

2nd innovation: Precise lepton momentum/energy scale corrections using a new method A. Bodek et al. Euro. Phys. J. C72, 2194 (2012) <u>arXiv:1208.3710v3</u> [hep-ex]

3rd innovation: Event weighting method for A_{FB} analyses (all systematic errors in acceptance and efficiencies cancel) A. Bodek. Euro. Phys. J. C67, 321 (2010) arXiv:0911.2850v4 [hep-ex]

🗱 Fermilab 🚺

•

1st innovation: Full FITTER EW radiative corrections Enhanced Born Approximation (EBA)

Implemented by the Rochester CDF group (**Willis Sakumoto**, A. Bodek, J.-Y. Han), see Phys. Rev. D88, 072002 (2013) Appendix A <u>arXiv:1307.0770v3</u> [hep-ex]

 $g_V^f \gamma_\mu + g_A^f \gamma_\mu \gamma_5.$ The Born-level couplings are

$$\begin{split} g_V^f &= T_3^f - 2Q_f \, \sin^2 \theta_W \\ g_A^f &= T_3^f, \end{split}$$

If PYTHIA is used then the EBA EW correction to $\sin^2 \Theta_{eff} = 0.00040 + -0.00012$ Vs. stat error 0.00080 ($\mu^+\mu^-$) 9 fb⁻¹ Vs. stat error 0.00040 (e⁺e⁻) 9 fb⁻¹

They are modified by ZFITTER 6.43 form factors (which are complex)

$$\begin{split} g_V^f &\to \sqrt{\rho_{eq}} \, (T_3^f - 2Q_f \kappa_f \, \sin^2 \theta_W), \text{ and } & \operatorname{SM}(\sin^2 \theta_W) \stackrel{\text{EWK}}{\longmapsto} \sin^2 \theta_{\text{eff}}(s) \stackrel{\text{QCD}}{\longleftrightarrow} A_4(s), \\ g_A^f &\to \sqrt{\rho_{eq}} \, T_3^f, & \text{A}_{\text{FB}} = (3/8) \, \text{A}_4 \end{split}$$

- T_3 and $sin^2\theta_w \rightarrow effective T_3$ and $sin^2\theta_w$: 1-4% multiplicative form factors

- On-mass shell scheme: $\sin^2\theta_w \equiv 1 - M_w^2/M_z^2$ to all orders

 $\sin^2 \theta_{eff}^{lept} \simeq 1.037 \cdot \sin^2 \theta_{W}$ [ZFITTER $\kappa_e(\sin^2 \theta_{W}, M_z)$ form factor]

2nd innovation: Precise momentum/energy scale corrections A. Bodek et al. Euro. Phys. J. C72, 2194 (2012) Xiv:1208.3710v3 [hep-ex]

This new technique is used in CDF (for muons and electrons). It is currently used in CMS to get a precise measurement of the Higgs mass.

The Problem

Muons: There are η , Φ and charge dependent errors in the measured momentum because of residual misalignments in the detector.

Electrons: There are η , Φ dependent energy miscalibrations.

These errors exist in both data and in the hit level Monte Carlo

The Solution :

Step 1 : Remove the correlations between the scale for the two leptons by getting an initial calibration using Z events and requiring that the mean $<1/P_{T}>$ of each lepton in bins of η , Φ and charge be correct.

Step2: The Z mass is is used as a calibration. The method requires that the Z mass as a function of η, Φ , or charge of each lepton be correct.

After corrections, the Z mass as a function of η , Φ for both the data and hit level MC agree with the **generator level Monte Carlo**. All charge bias is removed T

	<u>Stat.</u>	Error in sin ²	<u> Ə_{eff} Error</u>	<u>in sin²⊖_{eff} from momentum/energy scale:</u>
CDF (2014)	+-0.00090	+-0.00005	(using EPJC-2012 method)
Dzero	(2014)	+-0.00040	+-0.00008	(using a method which is the same as EPJC-2012)
ATLAS ((2013)	+-0.00040	+-0.00050	
CMS	(2011)	+-0.00200	+-0.00130	0 (prior to using EJC-2012) UNIVERSITY of
				INTER KOCHESTER

١.

3rd innovation: Event weighting method for A_{FB} analyses
A. Bodek, Euro. Phys. J. C67, 321 (2010). arXiv:0911.2850v4 [hep-ex]

$dN/d\cos\theta = 1 + \cos^2\theta + A_0(M,P_T) (1 - 3\cos^2\theta)/2 + A_4(M) \cos\theta$

Two kinds of event weighting can be used, (1) angular weighting and (2) dilution weighting, or both. In the CDF analysis, angular event weighting is used.

Angular event weighting is equivalent to extraction of $A_4(M)$ in bins of cos Θ , and averaging the results. It is all done at once using event weights. Events at large cos Θ provide better determination of A4, so they are weighted more than events at small cos Θ . (events cos Θ =0 have zero weight).

In this technique, all $\cos\theta$ acceptance and efficiencies cancel to first order and the statistical errors are 20% smaller. Therefore acceptance/ efficiency corrections are NOT needed to measure $A_{fb} = (3/8)A_4$

Fermilab

Arie Bodek, Blois 2014

Example of a 2nd order correction

The measured Afb depend on the coverage in rapidity, Sometimes the quark direction is not in the direction of the proton. This small dilution effect depends on the antiquark distributions i.e. on PDFs. (we used CT10), and the rapidity range of the data.

Arie Bodek, Blois 2014

Results QED FSR and detector resolution smear events between mass bins. We correct for this smearing using matrix unfolding.

🛟 Fermilab 🝈

(Here, the edge bins are underflow and overflow bins) 0.8 0.5 First/Last Bin: Underflows/Overflows Raw A_{FB} (y<1) Data 0.4 ργτηίδ 0.6 **RESBOS NLO EBA** 0.3 **Unfolded A_{FB}** (y<1) 0.4 Ŧ 0.2 This event weighted Raw A_{rb} A_{FB} plot has no Ath 0.1 0.2 corrections.. 0 0 **9 fb**⁻¹ u⁺u -0.1 9 fb⁻¹ μ⁺μ⁻ + Data -0.2 -0.2 Simulation: PYTHIA+PHOTOS Prediction: PYTHIA lyl < 1 -0.3 🗄 -0.4 90 95 100 150 200 250 300 80 85 100 50 M (GeV/c²) M (GeV/c²) Effect of FSR

40 CDF Run II Preliminary, L = 9 fb ⁻¹ A _{fb} (M _{µp}) Measurement RESBOS NLO EBA template scan	Source	$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	$\sin^2 \theta_W$							
35	Momentum scale	± 0.00005	± 0.00005							
32E/	/ Backgrounds	± 0.00010	± 0.00010							
°≈ 30	QCD scales	± 0.00003	± 0.00003							
	CT10 PDFs	± 0.00037	± 0.00036							
25	EBA	± 0.00012	± 0.00012							
20										
0.22 0.221 0.222 0.223 0.224 0.225 0.226 0.227 sin ² ^θ w										
$ResRos sin^{2}A = 0.23150 + 0.0000 + 0.00011 + 0.00035 (CT10 PDFe)$										
$\sin^2 \theta_{W} = 0.22330 + 0.00080 + 0.00011 + 0.00035 \text{ CT10}(\text{PDFs})$										
M = 80.365+	-0.043 +- 0.005 +- 0.018 (0	CT10 PDFs)								
W	stat syst PDFs	,								
Template (measurement)	$\sin^2 \theta^{\text{lept}}$	$\sin^2 \theta_{\rm w}$	$\bar{\mathbf{v}}^2$							
	Shi Veff		λ							
RESBOS NLO Full ZFITTER EBA	0.2315 ± 0.0009	0.2233 ± 0.0008	21.1							
POWHEG-BOX NLO Full ZFITTER EBA	0.2314 ± 0.0009	0.2231 ± 0.0008	21.4							
Tree LO Full ZFITTER EBA	0.2316 ± 0.0008	0.2234 ± 0.0008	24.2							
PYTHIA NO EW radiative cor.	0.2311 ± 0.0008									
	*****		20.8							

Comparison to other measurements

* A factor of 2 reduction in errors is expected in Fall 2014 when the analysis of the CDF e+e- (9 fb^{-1}) data is completed.

Part II D0 Results:

Reference: DO note 6426-conf (2014) and talk by Breese Quinn (D0), EW Moriond March 19, 2014

Event selection: Two PT>25 GeV electrons, Central (CC) and endcap (EC)

Use 75< M_{e+e-} < 115 GeV

Total 560,367 events.

Low QCD background, EW background (t-tbar, tau-tau, diboson) negligible,

MC: PYTHIA with CTEQ6L1

Energy calibration: D0 recently implemented the momentum/ energy scale corrections similar to those used in CDF and CMS [A. Bodek Euro. Phys. J. C72, 2194 (2012)] i.e. Require that the Z mass be correct as a function of η

Fermilab

For the DO analysis, it is imperative that the various physics distributions, experimental acceptance and efficiencies, and resolution (in $\cos \theta$, rapidity, PT and mass) are modeled perfectly.

Efficiencies measured using tag and probe as a function of η and ϕ .

2D (PT and η) reweighting of PYTHIA to correct for higher order QCD corrections, NNLO boson mass reweighting.

20

Raw A_{FB} measurement is compared to reweighted MC A_{FB} templates corresponding to different $sin^2 \Theta_{eff}$ values

Different $\sin^2\theta_{eff}$ predictions obtained by reweighting generator level 2D (M, $\sin^2\theta_{eff}$) distribution of the default MC ($\sin^2\theta_{eff}$ = 0.232)

Done separately for CC-CC, CC-EC, and EC-EC events, and for different instantaneous luminosity periods

	CC-CC	CC-EC	EC-EC	Combined	DO
$\sin^2 \theta_W$	0.23086	0.23108	0.22910	0.23098	preliminary $e+e-9.7 \text{ fb}^{-1}$
statistical unc.	0.00116	0.00047	0.00276	0.00042	
systematic unc.	0.000086	0.000090	0.00019	0.00008	
Energy scale	0.000002	0.000009	0.000059	0.000008	
Energy smear	0.000010	0.000022	0.000126	0.000018	
Background	0.000018	0.000010	0.000025	0.000008	
Charge misID	0.000020	0.000036	0.000121	0.000030	
Electron ID	0.000081	0.000078	0.000053	0.000066	
total unc.	0.00116	0.00048	0.00277	0.00043	
PDF unc.				0.00029 =	

 $sin^2 \Theta_{eff} = 0.23098 \pm 0.00042$ (stat) ± 0.00014 (sys) ± 0.00029 (PDF)

Dzero adds a partial EW radiative correction of +0.00008

Summary

- * CDF ($\mu^+\mu^-$ 9 fb⁻¹) : Mw(indirect) = 80.365 ± 0.045 GeV (2014)
- * CDF (μ⁺μ⁻ 9 fb⁻¹) : D0 (e+e- 9.7 fb⁻¹ Preliminary)

 $sin^{2}\Theta_{eff} = 0.23150 \pm 0.00100 \quad (2014)$ $sin^{2}\Theta_{eff} = 0.23106 \pm 0.00053 \quad (2014)$ + 0.00032 ? (with full ZFITTER EBA EW rad cor?)

LEP/SLD 0.23153 ± 0.00016

LEP 0.23221 ± 0.00029

SLD 0.23098 ± 0.00026

LEP SLD difference is 0.00122

* CDF will reduce its errors by a factor of 2 with the run II 9 fb⁻¹ e+e- sample (results expected fall 2014). The combined CDF/DO error in $\sin^2\theta_{eff}$ will match LEP and SLD errors. Error in indirect MW will be close to the error in the direct measurement of MW

Incorporating LHC data into updated PDF fits will PDF error (current PDF error ± 0.00029)

