

Electroweak tests at the LHC

Nenad Vranješ Irfu - CEA Saclay on behalf of ATLAS and CMS collaborations

OUTLINE

- Two topics
 - Prospects for W mass measurement at the LHC
 - Electroweak tests with anomalous couplings
- W mass:
 - Very basics of the measurement, Tevatron results, statistical precision with Run-1
 - Supporting measurements: p_TZ, p_TW, Parton Shower tunes and strange quark PDF

Gauge boson couplings:

- Probing gauge bosons' self couplings with dibosons production, Vector boson scattering and electroweak Z+2jet production
- Leptonic final states (electrons and muons), photons and MET
- Limits on anomalous couplings mainly with full 7 TeV data, 8 TeV yet to come
 - Channel combination would increase sensitivity.

2

Plot inspired by Eberhardt et al. [arXiv:1209.1101]

- SM (EW sector) is an over-constrained theor^m^[GeV]
 3 parameters at the tree level (α_{em}, G_F, M_z)
 - Precise measurement probe loop diagrams => radiative corrections
- Mass depend on M²top and In(M_H), but also any new particle with weak charge.
- Precise measurement of top and W mass constrain Higgs mass:
 - Current ΔM_{H and} ΔM_{top}, require experimental precision of ~10 MeV uncertainty on W mass (cf. plenary talk by S. Tkazyuk)

W MASS: ANALYSIS STRATEGY

- Many components needed for Mw measurement: *a very complex measurement*
 - ISR (transverse) and PDFs (longitudinal boson momentum)
 - V-A couplings: angular distributions
 - FSR affects lepton momentum
- Experimental inputs
 - In situ calibration of the lepton momentum scale and hadronic recoil resolution
- Three observables:
- Iepton p_T
- neutrino p_T (MET)
- Transverse mass: $m^2_T = 2p_T MET (1 \cos \Delta \phi)$
- Some systematic uncertainties more affecting measurement with one observable then the other (consistency check)

PRECISION

Systematic (MeV)	Electrons	Muons	Common
Lepton Energy Scale	10	7	5
Lepton Energy Resolution	4	1	0
Recoil Energy Scale	6	6	6
Recoil Energy Resolution	5	5	5
$u_{ }$ efficiency	2	1	0
Lepton Removal	0	0	0
Backgrounds	3	5	0
$p_T(W) \mod (g_2, g_3, \alpha_s)$	9	9	9
Parton Distributions	9	9	9
QED radiation	4	4	4
Total	19	18	16

Systematics, systematics, systematics!

Table above: **D0** p_T lepton fit only, no statistics.

(N.B: many systematics statistically limited)

Each experiment @ LHC should reach 7 MeV precision with 10fb⁻¹ @14 TeV

- Each experiment should reach few MeV statistical precision with Run-1
- Desired Experimental systematics (lepton calibration for example, cf M_H measurement in 4 lepton channel) should be within reach

arXiv:0805.2093v2 [hep-ex]

CERN/LHCC 2006-021

$$rac{\partial m_W}{\partial_{rel} lpha_\ell} \sim 800 \; {
m MeV}/\%,$$

$$\frac{\partial m_W}{\partial_{rel}\sigma_\ell} = 0.8 \text{ MeV}/\%$$

momentum scale

momentum resolution

Physics modelling

- $\odot p_T Z$ (and $p_T W$) measurement
- QED, NLO EW corrections
- Polarization coefficients

● p_TZ measurement

- soon public result on full 2011 data
- \odot In combination with ϕ^{\star}

Parton Shower (PS) tuning

- p_TZ and p_TW the same QCD, difference in EW less important
- Tune PS on p_TZ to get better description of p_TW
- Exploit the high precision of the p_TZ and the complementary Z φ^{*} measurements to constrain the parton shower models
- \odot New ATLAS tune based on ATLAS ϕ^{\star} (ee) and $p_{T}Z$ (µµ) uncorellated measurements

QED and EWK corrections

Constrain PDFs

- double differential W and Z cross section measurement
- strange quark density

• ATLAS

- Use W+c, W± asymmetry, Z rapidity
- Use HERA DIS (v1.5) as baseline
- Strange PDF parameterised by one variable

• CMS

- Use W+c & 5fb⁻¹ W[±] asymmetry
- Use HERA DIS (v1.0) as baseline
- Allow strange PDF shape and normalization
- Similar CMS and ATLAS measurements using different methodologies!
- Small tension over strange-suppression between ATLAS & CMS result

- Fundamental test of Standard Model:
 - Self interactions of gauge bosons manifest themselves as a couplings of three (TGC) of four (QGC) gauge bosons (WWZ, WWγ, WWZγ, WWγγ, WWZZ, WWWW)
 - Structure of TGC and QGC completely determined by SU(2)_LxU(1)_Y symmetry
 - Precision measurement of TGC and QGC either confirm SM or indicate presence of New Physics at the mass scale through the discovery of anomalous couplings
 - Anomalous couplings manifest as increase of total cross sections and differential cross sections at high invariant mass and high transverse

ANOMALOUS TGC

- Beyond SM physics modelled by effective Lagrangian with anomalous TGC (aTGC) parameters
- Values of the parameters are 0 in the SM
- Charged aTGC (WWV): in SM
 - measurements in WW, WZ, Wγ diboson processes + Zjj
 - $\textcircled{O} \frac{\mathcal{L}_{WWV}}{g_{WWV}} = ig_1^V (W_{\mu\nu}^+ W^\mu V^\nu W_\mu^+ V_\nu W^{\mu\nu}) + i\kappa_V W_\mu^+ W_\nu V^{\mu\nu} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^+ W_\nu^\mu V^{\nu\lambda} W_{\mu\nu}^+ W_\nu^\mu V^{\nu\lambda} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^+ W_\nu^\mu V^{\nu\lambda} + \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^\mu W_\nu^\mu W_\mu^\mu W_\nu^\mu W_\mu^\mu W_\mu^\mu$
 - 5 parameters: Δg_1^Z (= $g_1^Z 1$), $\Delta \kappa_Z$ (= $\kappa_Z 1$), $\Delta \kappa_\gamma$ (= $\kappa_\gamma 1$), λ_Z , λ_γ
- Neutral aTGC (ZZV): not in SM
 - \odot measurement using ZZ and Z $\!\gamma$
 - $\mathcal{L}_{ZZV} = -\frac{e}{M_Z^2} \left(f_4^V (\partial_4^V V^{\mu\beta}) Z_\alpha (\partial^\alpha Z_\beta) + f_5^V (\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta \right)$
 - 8 parameters h_3^V , h_4^V , f_4^V , f_5^V

• avoid unitarity violation via dipole form factors $\mathcal{F}(s) = \frac{1}{(1+\hat{s}/\Lambda^2)^n}$

CMS follows non-form factor convention, ATLAS shows both

$WW \rightarrow l\nu l\nu$

Phys. Rev. D 87, 112001 (2013) Events / 10 GeV ATLAS ••••••• $\Delta \kappa_z = 0.1, \Delta g_1^z = -0.1$ 10 reweighted SM WW - SM WW 50 100 150 200 250 300 Leading lepton p_{T} [GeV] UNIS (S = / IEV, L = 4.92 ID ົ> ຫຼັ450 🗕 Data 20 Best fit _400 ••••• TGC (λ₇=0.05) Events 055 TGC (λ₇=0.20) 300 250 200 150 100 50 100 120 140 180 80 160 200 p_{_Tmax} (GeV)

Eur.Phys.J. C73 (2013) 2610

- Cross section slightly above NLO predictions.
 H→WW*→IvIv 3% (not included in this plot)
 aTGC
- \odot sensitive to both WWy and WWZ couplings
- assume some relations between the couplings, 3 "scanarios" for the limits:
 - "LEP scenario" (explicit SU(2)_L x U(1)_Y invariance. 3 parameters) $\lambda_{\gamma} = \lambda_{Z}$ and $\Delta \kappa_{Z} = \Delta g_{1}^{Z} - \Delta \kappa_{\gamma} \tan^{2} \theta_{W}$

$$\lambda_{\gamma} = \lambda_Z$$
 and $\Delta \kappa_Z = \Delta g_1^- - \Delta \kappa_Z$

"HISZ" (2 param)

$$\Delta g_1^Z = \frac{1}{2 \cos^2 \theta_W} \Delta \kappa_{\gamma}, \ \Delta \kappa_Z = \frac{1}{2} (1 - \tan^2 \theta_W) \Delta \kappa_{\gamma}, \ \lambda_Z = \lambda_{\gamma}$$

• equal coupling scenario (2 parameters)

 $\Delta \kappa = \Delta \kappa_{\gamma} = \Delta \kappa_{Z} \text{ and } \lambda = \lambda_{\gamma} = \lambda_{Z}$ • 95% C.L. limits on aTGC extracted for $\Lambda = 6$ TeV and $\Lambda = \infty$

- Leading lepton p_T , statistics is still limited @ 7 TeV
- Limits better than Tevatron, LEP still most stringent limits

10

$WZ \rightarrow l \nu l l$

- p_TZ correlated to ŝ, used to set limits on aTGC
- Dominated by statistical uncertainty.
- Improvement with 8 TeV expected

- in WW Δκ_V ~ ŝ/M²w, while in WZ and
 Wγ as √ ŝ/Mw
 - more sensitivity to $\Delta \kappa_V$

11

$Zjj \rightarrow lljj$

$W\gamma \to l\nu\gamma$

13

Phys. Rev. D 87, 112003 (2013)

- Leptonic final state, suppress FSR: $\Delta R(I,\gamma) > 0.7$
- ${\scriptstyle \bigodot}$ aTGC extracted from $E_T\gamma$ observable
 - Uncertainties due to backgrounds and physics modelling
 - Supersedes Tevatron limits, still not competitive with LEP.

	$\Delta \kappa_{\gamma}$	λ_{γ}
$W\gamma \rightarrow e\nu\gamma$	[-0.45, 0.36]	[-0.059, 0.046]
$W\gamma \rightarrow \mu \nu \gamma$	[-0.46, 0.34]	[-0.057, 0.045]
$W\gamma ightarrow \ell u \gamma$	[-0.38, 0.29]	[-0.050, 0.037]

	Measured	Expected
processes	pp -	$ \ell \nu \gamma $
Λ	∞	~
$\Delta \kappa_{\gamma}$	(-0.41, 0.46)	(-0.38, 0.43)
λ_{γ}	(-0.065, 0.061)	(-0.060, 0.056)
Λ	6 TeV	6 TeV
$\Delta \kappa_{\gamma}$	(-0.41, 0.47)	(-0.38, 0.43)
λ_{γ}	(-0.068, 0.063)	(-0.063, 0.059)

 $Z\gamma \to ll\gamma, \nu\nu\gamma$

Phys. Rev. D 87, 112003 (2013)

h	h	h	h
2.7x10	1.3x10	2.9x10	2.5x10

The results from the vvy analysis dominate the sensitivity to anomalous TGCs in Zy production.

J. High Energy Phys. 10 (2013) 164 arXiv:1308.6832

CMS-PAS-SMP-13-005

- ${\scriptstyle \odot}$ ZZy and Zyy forbidden at the tree level
 - aTGC simulated using Sherpa
 - p_TZ of the leading lepton pair used to estimate parameter values
 - Dominated by statistical uncertainty

Much stringent limits with respect to Tevatron and LEP

Dataset	f_4^Z	f_4^{γ}	f_5^Z	f_5^{γ}
7 TeV	[-0.0088; 0.0085]	[-0.0098; 0.011]	[-0.0096; 0.0096]	[-0.011 ; 0.010]
8 TeV	[-0.0038; 0.0040]	[-0.0049; 0.0039]	[-0.0041; 0.0038]	[-0.0049; 0.0046]
Combined	[-0.0030; 0.0034]	[-0.0039; 0.0031]	[-0.0036; 0.0032]	[-0.0038; 0.0038]
xpected (7 and 8 TeV)	[-0.0040; 0.0045]	[-0.0054; 0.0046]	[-0.0045; 0.0049]	[-0.0048; 0.0052]

$$0.004 < f_4^Z < 0.004, \ -0.005 < f_5^Z < 0.005, \ -0.004 < f_4^\gamma < 0.004, \ -0.005 < f_5^\gamma < 0.005.$$

$$\begin{split} \sigma^{\text{fid}}_{ZZ \to \ell^- \ell^+ \ell'^- \ell'^+} &= 20.7^{+1.3}_{-1.2}(\text{stat.}) \pm 0.8(\text{syst.}) \pm 0.6(\text{lumi.}) \text{ fb}\\ \sigma^{\text{tot}}_{ZZ} &= 7.1^{+0.5}_{-0.4}(\text{stat.}) \pm 0.3(\text{syst.}) \pm 0.2(\text{lumi.}) \text{ pb} \end{split}$$

In agreement with SM expectations (MCFM)

● 7.2 + 0.3 -0.2 pb

ATLAS-CONF-2013-020 JHEP03(2013)128

Electroweak test at the LHC

Blois 2014

aTGC : SUMMARY

Nov 2013

Feb 2013

100 2010			
			ATLAS Limits CMS Limits D0 Limit LEP Limit
٨r	H	WW	-0.043 - 0.043 4.6 fb ⁻¹
	H	WV	-0.043 - 0.033 5.0 fb ⁻¹
	⊢●⊣	LEP Combination	-0.074 - 0.051 0.7 fb ⁻¹
2	⊢ −−1	WW	-0.062 - 0.059 4.6 fb ⁻¹
⁷ Z	⊢I	WW	-0.048 - 0.048 4.9 fb ⁻¹
	⊢I	WZ	-0.046 - 0.047 4.6 fb ⁻¹
	н	WV	-0.038 - 0.030 5.0 fb ⁻¹
	юн	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	H H	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
۸dZ	H	WW	-0.039 - 0.052 4.6 fb ⁻¹
$\Delta 9_1$	⊢−−−−	WW	-0.095 - 0.095 4.9 fb ⁻¹
	⊢	WZ	-0.057 - 0.093 4.6 fb ⁻¹
	юн	D0 Combination	-0.034 - 0.084 8.6 fb ⁻¹
	H	LEP Combination	-0.054 - 0.021 0.7 fb ⁻¹
-0.5	0	0.5 1	1.5
		aTGC I	imits @95% C.L

a 190 Linius (230 /0 0.L.

• No deviation from SM observed!

• Limits on aTGC are mostly published with 7 TeV data (CMS ZZ is notable exception)

- Better sensitivity for neutral couplings wrt to LEP and Tevatron
- Output time with Tevatron for charge TGC.

Improvement in sensitivity with 20fb⁻¹ @ 8 TeV

• Also through combination in channels.

			CIVIS FIEL LIMILS
fŶ	⊢−−−−− 	ZZ	-0.015 - 0.015 4.6 fb ⁻¹
4	H	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	H	ZZ (2l2v)	-0.004 - 0.003 5.1, 19.6 fb ⁻¹
f Z	⊢−−−− I	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
4	н	ZZ	-0.004 - 0.004 19.6 fb ⁻¹
	Н	ZZ (2l2v)	-0.003 - 0.003 5.1, 19.6 fb ⁻²
٤Ŷ	├──── ┤	ZZ	-0.016 - 0.015 4.6 fb ⁻¹
' ₅	⊢ −−1	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	H	ZZ(2l2v)	-0.004 - 0.004 5.1, 19.6 fb ⁻
۶Z	⊢−−−− 1	ZZ	-0.013 - 0.013 4.6 fb ⁻¹
1 ₅	⊢–−1	ZZ	-0.005 - 0.005 19.6 fb ⁻¹
	н	ZZ (2l2v)	-0.004 - 0.003 5.1, 19.6 fb ⁻
-0.5	0	0.5	1 1.5 x10
Feb 2013			
Feb 2013			ATLAS Limits
Feb 2013			ATLAS Limits
Feb 2013			ATLAS Limits
Feb 2013 h_3^{γ}		Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit -0.015 - 0.016 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹
Feb 2013		Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit -0.015 - 0.016 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.022 - 0.020 5.1 fb ⁻¹
Feb 2013 h_3^{γ}		Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit -0.015 - 0.016 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.022 - 0.020 5.1 fb ⁻¹ -0.013 - 0.014 4 6 fb ⁻¹
h_3^{γ}		Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit $-0.015 - 0.016 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.022 - 0.020 \ 5.1 \ fb^{-1}$ $-0.013 - 0.014 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$
h_3^{γ}		Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit $-0.015 - 0.016 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.022 - 0.020 \ 5.1 \ fb^{-1}$ $-0.013 - 0.014 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$
h_3^{γ}		Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit $-0.015 - 0.016 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.022 - 0.020 \ 5.1 \ fb^{-1}$ $-0.013 - 0.014 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.020 - 0.021 \ 5.1 \ fb^{-1}$
h_3^{γ} h_3^{γ} h_3^{γ} h_3^{γ}		Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit $-0.015 - 0.016 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.022 - 0.020 \ 5.1 \ fb^{-1}$ $-0.013 - 0.014 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.020 - 0.021 \ 5.1 \ fb^{-1}$ $-0.009 - 0.009 \ 4.6 \ fb^{-1}$
h_{3}^{γ} h_{3}^{γ} $h_{4}^{\gamma}x100$		Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit -0.015 - 0.016 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.013 - 0.014 4.6 fb ⁻¹ -0.003 - 0.003 5.0 fb ⁻¹ -0.013 - 0.014 4.6 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.020 - 0.021 5.1 fb ⁻¹ -0.009 - 0.009 4.6 fb ⁻¹ -0.001 - 0.001 5.0 fb ⁻¹
Feb 2013 h_3^{γ} h_3^{Z} $h_4^{\gamma} \times 100$ $h^{Z} \times 100$		Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit Imits CDF Limit $-0.015 - 0.016 + 4.6 \text{ fb}^{-1}$ $-0.003 - 0.003 + 5.0 \text{ fb}^{-1}$ $-0.013 - 0.014 + 4.6 \text{ fb}^{-1}$ $-0.003 - 0.003 + 5.0 \text{ fb}^{-1}$ $-0.003 - 0.003 + 5.0 \text{ fb}^{-1}$ $-0.009 - 0.009 + 4.6 \text{ fb}^{-1}$ $-0.009 - 0.009 + 4.6 \text{ fb}^{-1}$
h_{3}^{γ} h_{3}^{γ} $h_{4}^{\gamma}x100$ $h_{4}^{Z}x100$		Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ Ζγ	ATLAS Limits CMS Limits CDF Limit Imits CMS Limits CDF Limit $-0.015 - 0.016 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.013 - 0.014 \ 4.6 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.003 - 0.003 \ 5.0 \ fb^{-1}$ $-0.000 - 0.001 \ 5.0 \ fb^{-1}$ $-0.001 - 0.001 \ 5.0 \ fb^{-1}$ $-0.001 - 0.001 \ 5.0 \ fb^{-1}$

0.5

-0.5

0

x10⁻¹

1.5

aTGC Limits @95% C.L.

⊢<u></u> '|

ATLAS Limits

17

- V V→V V scattering is a key process for understanding of EWK symmetry breaking
 Strong and EW production of WWjj
 - Same sign W production, strong production does not dominate

Preselection:

exactly 2 same-charge leptons (p_T> 25 GeV)

 \geq 2 jets, p_T> 30 GeV

MET > 40 GeV, no b-jets

 $m_{jj} > 500 \text{ GeV}, |\Delta y_{jj}| > 2.4$ (applied only for VBS)

 Main backgrounds:prompt lepton (WZ/γ*+j), conversion (Wγ+j), non-prompt

 Evidence of WWjj and EWK WWjj are observed with with 4.6 and 3.6σ respectively

Probe of WWWW coupling
 Cross section measurement

 $\sigma_{w^{\pm}w^{\pm}jj}^{EW} = 1.3 \pm 0.4(\text{stat}) \pm 0.2(\text{syst}) \text{ fb}$ SM: $\sigma_{w^{\pm}w^{\pm}jj}^{EW}$ (NLO) = 0.95 ± 0.06 fb

 α_{A}

Exciting time for electroweak physics at the LHC

Prospects for W boson mass measurement:

- Huge accumulated statistics of leptonic W bosons decays should give few MeV statistical uncertainty on W mass measurement.
- Experimental systematic uncertainties: lepton momentum scale/resolution, hadronic recoil resolution.
- Physics modelling benefits from supporting measurement such as P_TZ, p_TW, Parton shower tunes...
- W/Z double differential cross section measurements and strange quark density help constraining PDF uncertainties.
- Multiboson production: test self couplings of gauge bosons.
 - New energy regime: no deviation with respect to SM predictions
- Limits on anomalous couplings mostly at full 7 TeV dataset.
 - Still most of the LHC data at 8 TeV to be analysed more results with improved precision expected soon.

BACKUP

XSEC

ELECTROWEAK FITS

•	From the
	Gfitter
	Group,
	EPJC 72,
	2205
	(2012)

 Left: full fit incl. M_H

 Middle: not incl. M_H

 Right: fit incl M_H, not the row

the	Parameter	neter Input value Free Fit Result in fit		Fit Result	Fit without M_H measurements	Fit without exp. input in line
er	M_H [GeV] $^\circ$	$125.7\substack{+0.4 \\ -0.4}$	yes	$125.7\substack{+0.4 \\ -0.4}$	94.7^{+25}_{-22}	94.7^{+25}_{-22}
p,	M_W [GeV]	80.385 ± 0.015	-	$80.367^{+0.006}_{-0.007}$	$80.367^{+0.006}_{-0.007}$	80.360 ± 0.011
. 72	Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001	2.091 ± 0.001	2.091 ± 0.001
, ,	M_Z [GeV]	91.1875 ± 0.0021	yes	91.1878 ± 0.0021	91.1878 ± 0.0021	91.1978 ± 0.0114
	Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4954 ± 0.0014	2.4954 ± 0.0014	2.4950 ± 0.0017
2)	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	-	41.479 ± 0.014	41.479 ± 0.014	41.471 ± 0.015
	R^0_ℓ	20.767 ± 0.025	-	20.740 ± 0.017	20.740 ± 0.017	20.715 ± 0.026
	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	-	$0.01626^{+0.0001}_{-0.0002}$	$0.01626^{+0.0001}_{-0.0002}$	0.01624 ± 0.0002
full fit	$A_\ell (\star)$	0.1499 ± 0.0018	-	0.1472 ± 0.0007	0.1472 ± 0.0007	-
\ <u>л</u>	$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	-	$0.23149^{+0.00010}_{-0.00008}$	$0.23149^{+0.00010}_{-0.00008}$	0.23150 ± 0.00009
vi _H	A_c	0.670 ± 0.027	-	$0.6679^{+0.00034}_{-0.00028}$	$0.6679^{+0.00034}_{-0.00028}$	0.6680 ± 0.00031
	A_b	0.923 ± 0.020	-	$0.93464^{+0.00005}_{-0.00007}$	$0.93464^{+0.00005}_{-0.00007}$	0.93463 ± 0.00006
	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	-	0.0738 ± 0.0004	0.0738 ± 0.0004	0.0737 ± 0.0004
le: not	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	-	0.1032 ± 0.0005	0.1032 ± 0.0005	0.1034 ± 0.0003
М.,	R_c^0	0.1721 ± 0.0030	-	0.17223 ± 0.00006	0.17223 ± 0.00006	0.17223 ± 0.00006
чн	R_b^0	0.21629 ± 0.00066	-	0.21548 ± 0.00005	0.21548 ± 0.00005	0.21547 ± 0.00005
	\overline{m}_c [GeV]	$1.27 {}^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$	$1.27^{+0.07}_{-0.11}$	-
ii fit	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	$4.20^{+0.17}_{-0.07}$	-
/	m_t [GeV]	173.20 ± 0.87	yes	173.53 ± 0.82	173.53 ± 0.82	$176.11^{+2.88}_{-2.35}$
	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) ^{(\dagger \triangle)}$	2757 ± 10	yes	2755 ± 11	2755 ± 11	2718^{+49}_{-43}
	$\alpha_s(M_Z^2)$	_	yes	$0.1190^{+0.0028}_{-0.0027}$	$0.1190^{+0.0028}_{-0.0027}$	0.1190 ± 0.0027
	$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{\mathrm{theo}}$	yes	4	4	-
	$\delta_{\rm th} \sin^2 \theta_{\rm eff}^{\ell}$ (†)	$[-4.7, 4.7]_{\rm theo}$	yes	-0.6	-0.5	-

FB SYMMETRY AND WEAK MIXING ANGLE

Can be measured at colliders in asymmetries:

- CMS: 1.1 fb⁻¹, ATLAS 4.6 fb⁻¹ (preliminary)
- $\mathbf{g}_{\mathbf{A}}$ and $\mathbf{g}_{\mathbf{V}}$ interference leads to asymmetry in polar angle w.r.t quark pp collision: where does the quark come from?

• AFB @ CMS, no Z- mass constrained, results consistent with SM

Electroweak test at the LHC

Blois 2014

On-shell: $\sin^2 \theta_W = 1 - \frac{M_W^2}{M_W^2}$

• Tevatron experience: use J/ $\psi \rightarrow \mu\mu$ (and Y), but p_T<5-10 GeV, test scale on Z $\rightarrow \mu\mu$

23

$Z \to llll$

dơ/dm_{4I} [fb/GeV]

- Measurement of the 4lep production cross section at the Z resonance provides a test of the SM and a cross-check of the detector response to the 4lep state from Higgs decays.
- Rare decay, no measurement before the LHC
- Cross section measured:

$$\sigma_{Z \to 4\ell} = 107 \pm 9 \text{ (stat)} \pm 4 \text{ (syst)} \pm 3 \text{ (lumi) fb}$$

SM (NLO, 8 TeV): $\sigma_{Z \to 4\ell} = 104.8 \pm 2.5 \text{ fb}$

- Branching ratio subtract expected non-resonant contribs, normalize to Z→ µµin same dataset:
- consistent with SM expectations (Powheg):(3.30±0.01) x 10⁻⁶

 $\Gamma_{Z \to 4\ell} / \Gamma_Z = (3.20 \pm 0.25 \text{ (stat)} \pm 0.13 \text{ (syst)}) \times 10^{-6}$

ATLAS: arXiv:1403.5657 [hep-ex]; ATLAS-CONF-2013-055 ⁷⁵ CMS: JHEP 12 (2012) 034, arXiv:1210.3844 [hep-ex]; CMS PAS SMP-12-009

WW/WZ WITH JET FINAL STATES

AQGC

Exploit unique final states to access pure quartic contributions

- Exclusive WW production
- WWγ and WZγ, with one massive boson decay into jets
- New measurements in last year
- New measurements in the last year
 - Probing charged quartic gauge coupling
 - WWγγ, WWZγ
 - Significant improvement over Tevatron and LEP

Electroweak test at the LHC

EXPECTED PRECISION

		M _w [GeV]	80.46 80.44 80.42 80.42	68% and 95% CL fit co 68% and 95% CL fit co w/o M _w and m _t measu Present SM fit Prospects for L Prospects for IL Present measurement	ontours irements HC _C/GlgaZ		m _t ± 1σ	G	fitter sm			
			80.38	ILC precision LHC precision						-		
			80.36	_M _w ± 1σ						-		
			80.34	-								
			80.32	-								
			80.3 L	165	17	<u>'</u> n	175	120		195		
$\Delta M_W ~[{ m MeV}]$		LHC	;		LHC	LHC	ILC/GigaZ	ILC	ILC	ILC	TLEP	SM prediction
\sqrt{s} [TeV]	8	14	14	$\sqrt{s} [{ m TeV}]$	14	14	0.091	0.161	0.161	0.250	0.161	-
$\mathcal{L}[\mathrm{fb}^{-1}]$	20	300	3000	$\mathcal{L}[\mathrm{fb}^{-1}]$	300	3000		100	480	500	3000×4	-
PDF	10	5	3	$\Delta M_W \; [{ m MeV}]$	8	5	-	4.1-4.5	2.3 - 2.9	2.8	< 1.2	4.2(3.0)
QED rad.	4	3	2	$\Delta \sin^2 heta_{ m eff}^\ell \left[10^{-5} ight]$	36	21	1.3	-	-	-	0.3	3.0(2.6)
$p_T(W)$ model	2	1	1	Table 1-12.Targetalso including estimation	get accunated fut	racies fo ture theo	r the measurer pretical uncerta	ment of M inties due	W and sin to missing	$h^2 \theta^\ell_{eff}$ at the higher-order of the second	t the LHC, order correc	ILC and TLEP, tions, and theory
other systematics	10	5	3	uncertainties of the	eir SM j	predictio	ns. The uncer	tainties on	the SM	predictio	ns are prov	vided for $\Delta m_t =$
W statistics	1	0.2	0	$\begin{array}{c} 0.5(0.1) \ GeV \ (see \ 2) \\ 80.385 \pm 0.015 \ GeV \end{array}$	Table 1-3 7 [112] a	3 for det and sin ² 6	ails). At present $A_{\text{eff}}^{\ell} = (23153 \pm$	nt the means $16) \times 10^{-3}$	asured valu ⁵ [3] comp	ues for <i>M</i> pared to t	<i>I_W</i> and sin their current	${}^{2} \theta_{\text{eff}}^{c} \text{ are: } M_{W} = $ t SM predictions
Total	15	8	5	of Section 1.2.1: M	W = 80.	360 ± 0.0	008 GeV and si	$ in^2 \theta_{\text{eff}}^\ell = 0 $	$23127 \pm 7.$	$(3) \times 10^{-1}$	⁵ .	-