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quantum corrections (potential solution to Hierarchy problem)

Higgs field mass term the only dimensionful parameter of the SM  ⟾  Soft breaking of scale 
symmetry

Scale symmetry is anomalous!! But, the logarithmic quantum scale breaking is facilitated by 
dim-4 operators  ⟾  No contribution to dim-2 mass Higgs mass operator

Use a regulator that respects the scale symmetry (e.g. dim-reg)  ⟾  Higgs is technically 
natural

Works only if no other physical scale near to and above the weak scale (or with a “small” 
coupling to weak scale)
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fields

Introduce an additional complex singlet scalar, with a CP-symmetric potential

Include RH Majorana neutrinos (see-saw), and couple them to the singlet  ⟾  Weak-scale Majorana 
neutrino masses

CP-even scalars mix to produce two physical Higgs bosons (one with a mass 125 GeV), CP-odd 
pseudoscalar is a stable DM candidate (due to CP-symmetry)

Constrain the model by theoretical and experimental bounds  ⟾  Small mixing between electroweak 
and singlet sectors (sinω ≲ 0.2), second Higgs with suppressed couplings, heavy TeV mass DM
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LHC measurements of the 125 GeV h Higgs properties

σ boson narrower than a pure SM Higgs  ⟾  LEP and LHC Higgs searches up to 1 TeV 
applied to σ boson

LUX direct detection bounds on the χ WIMP DM (both Higgs scalars mediators)

Planck data of the thermal relic density (DM annihilation into scalars, heavy SM states, and 
RH Neutrinos)
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Minimal classically scale invariant extension of the SM: additional complex 
singlet scalar, with a CP-symmetric potential  ⟾  possible solution to 
Hierarchy problem

Contains weak scale RH Majorana neutrinos

Predicts two physical Higgs bosons (one with a mass 125 GeV), pseudoscalar 
WIMP DM candidate

Scenario highly constrained and predictive  ⟾  Small mixing between 
electroweak and singlet sectors (sinω ≲ 0.2), second Higgs with suppressed 
couplings (can be heavier or lighter than 125 GeV), heavy TeV mass DM
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