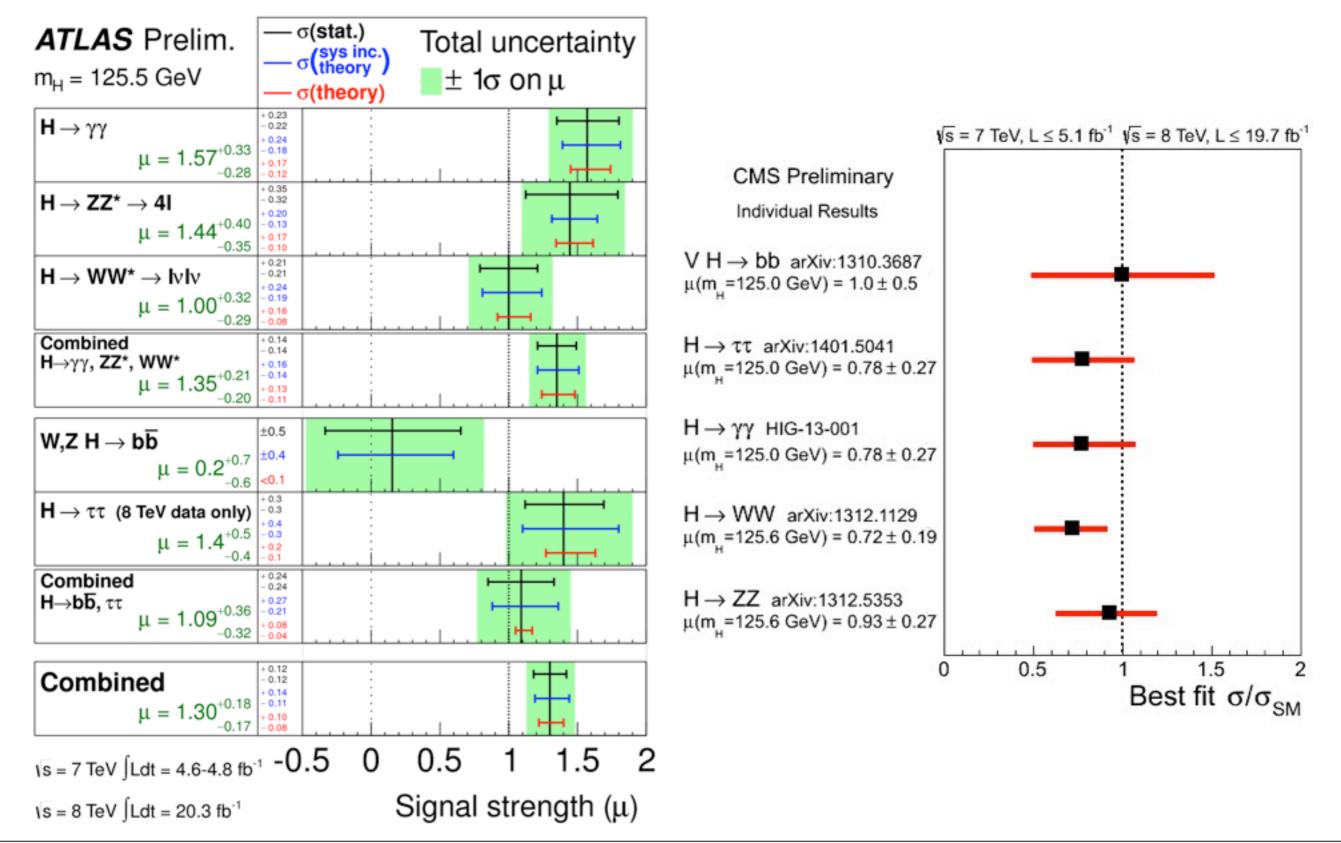
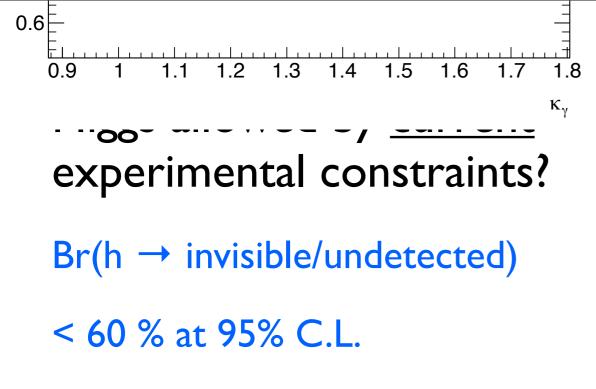

Exotic Decays of the I25 GeV Higgs Boson

Prerit Jaiswal Florida State University

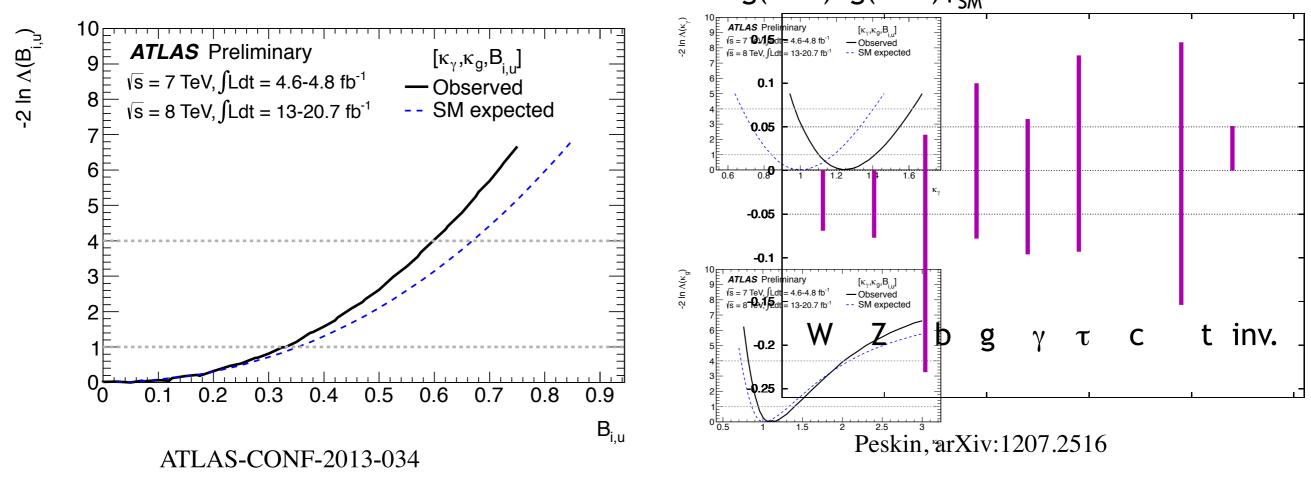

26th Rencontres de Blois May 21st, 2014

Post-Higgs Discovery

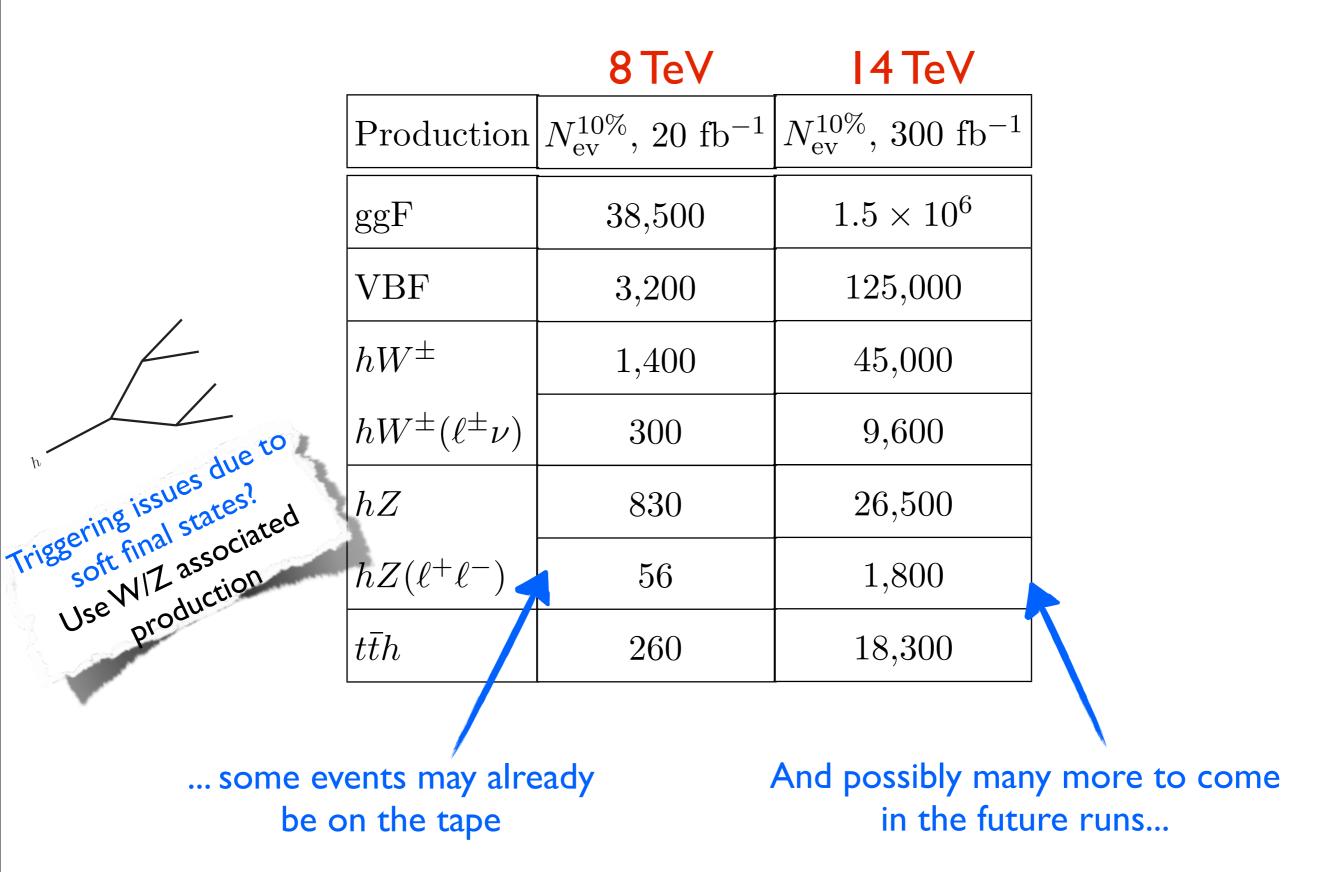


• The Higgs boson as we know of :

Higgs Couplings to SM particles are SM-like.



Wednesday, May 21, 14


Will exotic decays of the Higgs be allowed by <u>future</u> experimental constraints?

Even with 300⁻¹ fb @ 14 TeV LHC, uncertainties are at least 5-10 %.

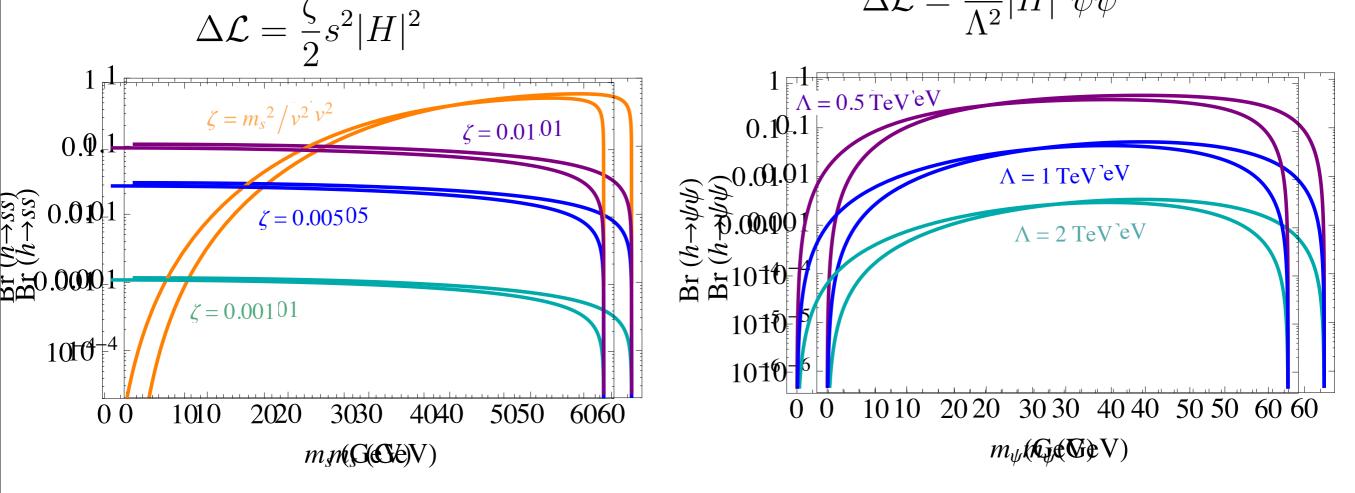
g(hAA)/g(hAA)|_{SM}-1 LHC

Assumption : $Br(h \rightarrow inv/undet) = 10\%$

But why study exotic decays of the Higgs?

It is a likely possibility.

SM Higgs decay width, $\Gamma_h = 4.07 \text{ MeV}$


Even a small coupling to new particles can give sizable BR.

Higgs as Portal to New Physics / Dark Sector

Probing NP scales > 1 TeV

$$\Delta \mathcal{L} = \frac{\mu}{\Lambda^2} |H|^2 \bar{\psi} \psi$$

Wednesday, May 21, 14

Existing Experimental Searches

• $h \rightarrow invisible$

CMS PAS HIG-13-013 (8 TeV)

CMS PAS HIG-13-018 (7+8 TeV)

CMS PAS HIG-13-028 (8 TeV)

ATLAS: 1402.3244 (7+8 TeV)

• $h \rightarrow light pseudoscalars$

h→2a→4 γ : ATLAS-CONF-2012-079 (7 TeV) h→2a→4 μ : CMS PAS HIG-13-010 (8 TeV)

• $h \rightarrow lepton-jets$

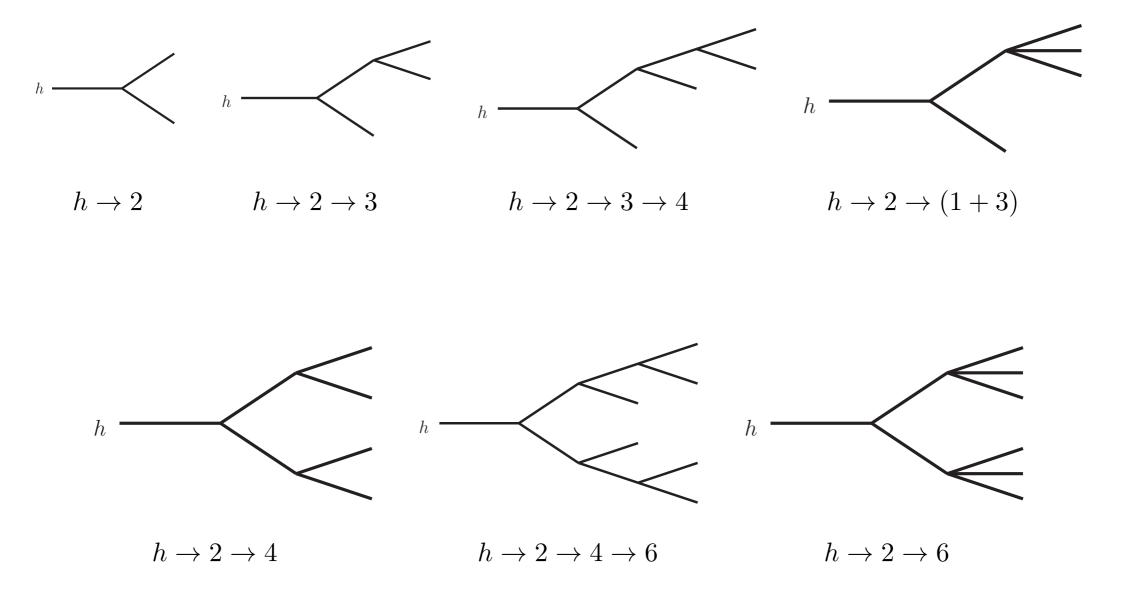
muon-jets	•	CMS PAS HIG-13-010 (8 TeV)
electron-jets	•	ATLAS I 302.4403 (~2/fb, 7 TeV)
displaced muon-jets	•	ATLAS 1210.0435 (~2/fb, 7 TeV)

Exotic Higgs Decay Working Group

D. Curtin, R. Essig, S. Gori, PJ, A. Katz, T. Liu, Z. Liu, D. McKeen, J. Shelton,

M. Strassler, Z. Surujon, B. Tweedie, Y. Zhong

Main Document : arXiv: 1312.4992


Aim of our work

- survey, systematize, prioritize exotic decays
- extensive literature exists, but models need reassessment: what BR can be probed? how maximize sensitivity?
- to some extent, develop search strategies, provide viable benchmark models/points, inform LHC14 trigger selection
- provide website that will be updated regularly

www.exotichiggs.physics.sunysb.edu

Assumptions

- Observed I25 GeV state is primarily responsible for EWSB
- 125 GeV state decays to new BSM particles
- Initial decay is 2-body

We studied Decay Modes we studied r

Theoretical Models

 $h \rightarrow MET$ $h \rightarrow 4b$ $h \rightarrow 2b2\tau$ $h \rightarrow 2b2\mu$ $h \rightarrow 4\tau, 2\tau 2\mu$ $h \rightarrow 4j$ $h \rightarrow 4j$ $h \rightarrow 2\chi 2j$ $h \rightarrow 4\chi$ $h \rightarrow 4\chi$

 $h \rightarrow Z_D Z_D \rightarrow 4I$ $h \rightarrow \gamma + MET$ $h \rightarrow 2\gamma + MET$ $h \rightarrow 4I + MET$ $h \rightarrow 2I + MET$ $h \rightarrow 0ne$ lepton jet $h \rightarrow two$ lepton jets $h \rightarrow bb + MET$ $h \rightarrow TT + MET$ SM + Scalar

2HDM (+ Scalar)

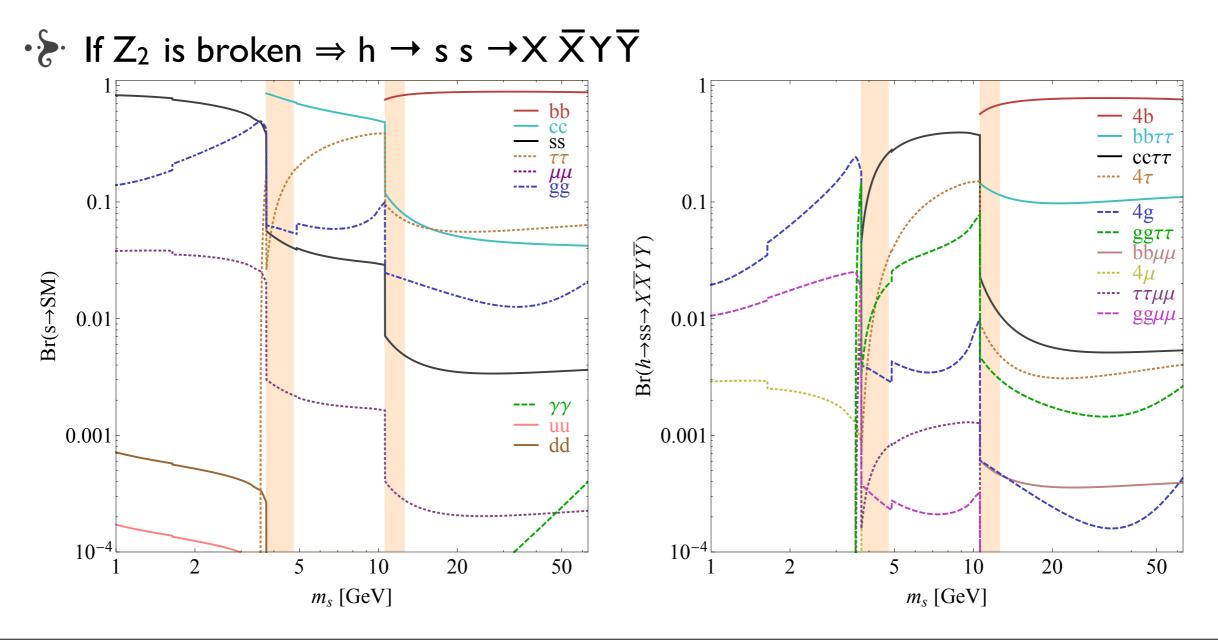
SM + Fermion

SM + 2 Fermions

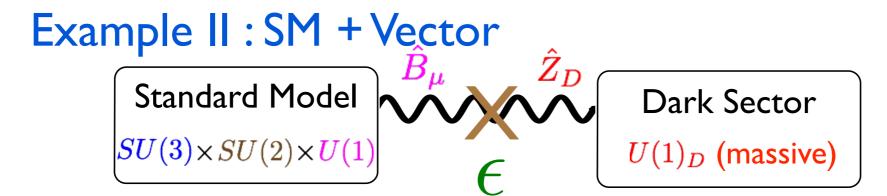
SM + Vector

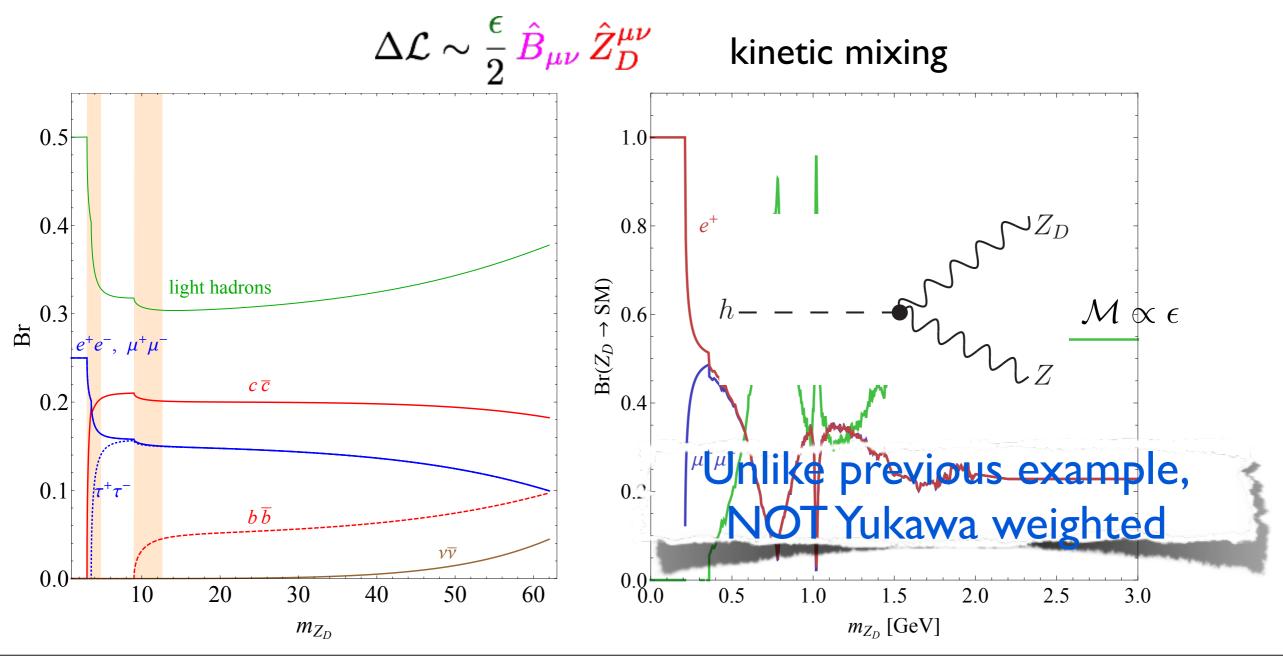
MSSM

NMSSM with exotic Higgs decay to scalars NMSSM with exotic Higgs decay to fermions Little Higgs Hidden Valleys


Need Simplified Model Approach!

Exotic Higgs Decays : Rich Phenomenology


• Example I : SM + Singlet


$$V(H,S) = -\mu^2 |H|^2 - \frac{1}{2} {\mu'}^2 S^2 + \lambda |H|^4 + \frac{1}{4} \kappa S^4 + \frac{1}{2} \zeta S^2 |H|^2.$$

• If unbroken Z_2 symmetry \Rightarrow stable $S \Rightarrow$ invisible Higgs decays

Exotic Higgs Decays : Rich Phenomenology

Wednesday, May 21, 14

Results

$h \rightarrow a a^{(\prime)} \rightarrow fermions$

h → 4b			a a → 4b (Yukawa weighted)	h → aa		
	Projected/Current		quarks allowed		quarks suppressed	
Decay	2σ Limit	Produc-		Limit on		Limit on
Mode	on $\operatorname{Br}(\mathcal{F}_i)$	tion	$\frac{\mathrm{Br}(\mathcal{F}_i)}{\mathrm{Br}(\mathrm{non-SM})}$	$\frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm Br(non-SM)}$	$\left \frac{\mathrm{Br}(\mathcal{F}_i)}{\mathrm{Br}(\mathrm{non-SM})}\right $	$\left \frac{\sigma}{\sigma_{\rm SM}} \cdot \operatorname{Br}(\text{non-SM}) \right $
\mathcal{F}_i	7+8 [14] TeV	Mode		$7{+}8$ [14] TeV		7+8 [14] TeV
$b\overline{b}b\overline{b}$	$0.7^R \ [0.2^L]$	W	0.8	0.9 [0.2]	0	_
$b\overline{b} au au$	$> 1 \ [0.15^L]$	V	0.1	$> 1 \ [1]$	0	_
$b\bar{b}\mu\mu$	$(2-7) \cdot 10^{-4} T$	G	3×10^{-4}	0.7 - 1	0	_
	$[(0.6-2) \cdot 10^{-4}]$			[0.2 - 0.7]		
ττττ	$0.2 - 0.4^R \; [\mathrm{U}]$	G	0.005	40 - 80 [U]	1	0.2 - 0.4 [U]
$\tau \tau \mu \mu$	$(3-7) \cdot 10^{-4} T [U]$	G	3×10^{-5}	$10 - 20 [{ m U}]$	0.007	$0.04 - 0.1 \ [U]$
μμμμ	$1 \cdot 10^{-4} R [U]$	G	$1 \cdot 10^{-7}$	1000 [U]	$1 \cdot 10^{-5}$	10 [U]

projection/limit based on theory estimate in literature (L), our theory estimate (T), our re-interpretation of an LHC limit (R), or is unknown (U)

$h \rightarrow a a^{(\prime)} \rightarrow fermions$

	Projected/Current		qua	rks allowed	quark		
Decay	2σ Limit	Produc-		Limit on		Limit on	
Mode	on $\operatorname{Br}(\mathcal{F}_i)$	tion	$\frac{\mathrm{Br}(\mathcal{F}_i)}{\mathrm{Br}(\mathrm{non-SM})}$	$\frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm Br(non-SM)}$	$\left \frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})} \right $	$\left \frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm Br(non-SM)} \right $	
\mathcal{F}_i	7+8 [14] TeV	Mode		7+8 [14] TeV		7+8 [14] TeV	
$b\overline{b}b\overline{b}$	$0.7^R \ [0.2^L]$	W	0.8	0.9 [0.2]	0	_	
$b\overline{b} au au$	$> 1 \ [0.15^L]$	V	0.1	> 1 [1]	0	_	
$b\overline{b}\mu\mu$	$(2-7) \cdot 10^{-4} T$	G	3×10^{-4}	0.7 - 1	0		
	$[(0.6-2) \cdot 10^{-4}]$			[0.2 - 0.7]			
au au au	$0.2 - 0.4^R \; [U]$	G	0.005	40 - 80 [U]	1	$0.2 - 0.4 [\mathrm{U}]$	
$ au au\mu$	$(3-7) \cdot 10^{-4} T [U]$	G	3×10^{-5}	$10 - 20 \; [U]$	0.007	$0.04 - 0.1 \; [U]$	
$\mu\mu\mu\mu$	$1 \cdot 10^{-4} R [U]$	G	$1 \cdot 10^{-7}$	1000 [U]	$1 \cdot 10^{-5}$	10 [U]	

bbμμ & ττμμ searches well motivated in Run 1 & Run I

Example : Limits on $h \rightarrow a a \rightarrow 4b$

Theory estimates for 14 TeV LHC from existing literature

Carena et al. - arXiv:0712.2466 Kaplan, McEvoy - arXiv:1102.0704 (Use of jet-substructure techniques)

Limits from recasting $h \rightarrow 2 b LHC$ searches (7/8 TeV)

For $m_a < 15$ GeV, b-pair highly collimated. \Rightarrow Efficiency of SM h \rightarrow bb analysis is high Br(h \rightarrow 4b) < 0.7

$h \rightarrow a a^{(\prime)} \rightarrow \gamma \gamma / gg$

	Projected/Current		$\operatorname{Br}(a -$	$\rightarrow \gamma \gamma) \approx 0.004$	$\operatorname{Br}(a \to \gamma \gamma) \approx 0.04$		
Decay	2σ Limit	Produc-		Limit on		Limit on	
Mode	on $\operatorname{Br}(\mathcal{F}_i)$	tion	$\left \frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})} \right $	$\left \frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm Br(non-SM)} \right $	$\left \frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})} \right $	$\left \frac{\sigma}{\sigma_{\rm SM}} \cdot {\rm Br(non-SM)} \right $	
\mathcal{F}_i	7+8 [14] TeV	Mode		7+8 [14] TeV		7+8 [14] TeV	
jjjj	$> 1 \ [0.1^{L*}]$	W	0.99	$> 1 \ [0.1^*]$	0.92	$> 1 \ [0.1^*]$	
$\gamma\gamma jj$	$0.04 \ [0.01^{L*}]$	W	0.008	$5 [1^*]$	0.08	$0.5 [0.1^*]$	
$\gamma\gamma\gamma\gamma\gamma$	$2 \cdot 10^{-4} T [3 \cdot 10^{-5} L^*]$	G	$1 \cdot 10^{-5}$	20 [1*]	0.001	$0.2 [0.03^*]$	

search for 4y in Run I and for 4y, 4j, 2y2j in Run II

$h \rightarrow Z_D Z_D$

	Projected/Current			
Decay	2σ Limit	Produc-		Limit on
Mode	on $\operatorname{Br}(\mathcal{F}_i)$	tion	$\left \frac{\operatorname{Br}(\mathcal{F}_i)}{\operatorname{Br}(\operatorname{non-SM})} \right $	$\left \frac{\sigma}{\sigma_{\rm SM}} \cdot \operatorname{Br}(\text{non-SM}) \right $
\mathcal{F}_i	7+8 [14] TeV	Mode		7+8 [14] TeV
jjjj	$> 1 \ [0.1^{L*}]$	W	0.25	$> 1 \ [0.4^*]$
leee	$4 \cdot 10^{-5 R} [U]$	G	0.09	$4 \cdot 10^{-4} [\text{U}]$
$jj\mu\mu$	$0.002 - 0.008 \ ^{T} \ [U]$	G	0.15	0.01 - 0.06
	$[(5-20) \times 10^{-4} T]$			[0.003 - 0.01]
$b\overline{b}\mu\mu$	$(2-7) \cdot 10^{-4} T$	G	0.015	0.01 - 0.05
	$[(6-20) \cdot 10^{-5} T]$			[0.003 - 0.01]

search for 4 l highly motivated in Run I and Run II

Summary of highly motivated searches

- $h \to Z_D Z_D \to (\ell^+ \ell^-) (\ell^+ \ell^-)$
- $h \to ZZ_D \to (\ell^+ \ell^-)(\ell^+ \ell^-)$
- $h \to \ell^+ \ell^- + \not\!\!\!E_T$
- $h \to \ell^+ \ell^- \ell^+ \ell^- + \not\!\!\!E_T$
- $h \to aa^{(\prime)} \to (b\overline{b})(\mu^+\mu^-)$
- $h \to aa^{(')} \to (\tau^+ \tau^-)(\mu^+ \mu^-)$
- $h \to aa^{(\prime)} \to (\gamma\gamma)(\gamma\gamma)$
- $h \to \gamma \gamma + E_T$

 Search across full kinematic range, including regimes where leptons are collimated or (b-)jets merge

• Relaxing invariant mass = 125 GeV