

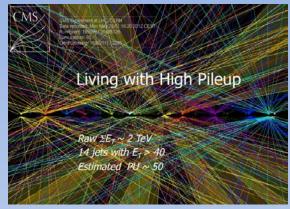
Studies of Higgs Boson Properties in Future LHC Runs (Snowmass & ECFA studies)

Rostislav Konoplich On behalf of the ATLAS & CMS collaborations Blois 2014, May 21st, 2014

Future LHC Goals

ESTIMATED LUMINOSITY and PILEUP (ATLAS & CMS)

	LHC	HL-LHC		
Run I	Run II	Run III	Run IV	Run V+
2010-2012	2015-2017	2019-2021	2024-2026	2028-2030+
25 fb ⁻¹	100 fb ⁻¹	300 fb⁻¹	>	3000 fb ⁻¹
6 x 10³³ cm ⁻² s ⁻¹	10^{34} cm ⁻² s ⁻¹	$2x10^{34}$ cm ⁻² s ⁻¹	>	5x10 ³⁴ cm ⁻² s ⁻¹
<µ> ≤ 21	\approx 40	≤ 60	>	≈ 140


LHC Run II : Beam in January, Physics in April (13/14 TeV)

2015	2015	2015	2015	2016
Spring	July (EPS)	August (LP)	Fall (LHCP)	March (Moriond)
0-1 fb⁻¹	1-2 fb ⁻¹	2-5 fb ⁻¹	3-10 fb⁻¹	15-30 fb ⁻¹

Detector Upgrades

High pileup will be compensated by detector upgrades.

Phase-0 upgrade (2013-2014)

- ATLAS: Insertable B-layer (IBL), Level-1 topological trigger, complete muon coverage, repairs (TRT, LAr and Tile)
- CMS: 4th muon end-cap station, complete muon coverage, new detector consolidation, colder tracker

Phase-1 upgrade (2018-2019)

- ATLAS: Fast Track Trigger (FTK), High granularity Level-1 calorimeter trigger, new small wheel for Level-1 muon trigger
- CMS: New Level-1 trigger system, new Si pixel detector, new photo-detector & electronics for HCAL

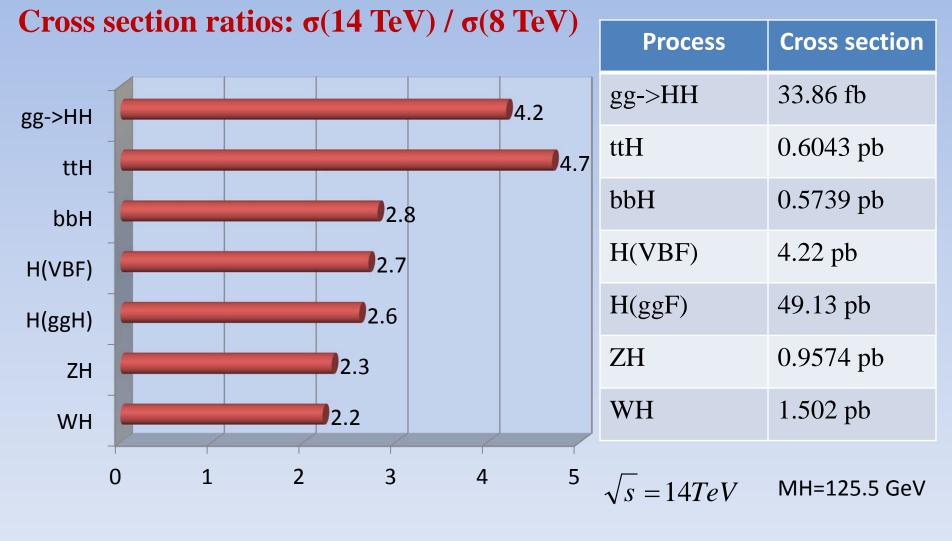
Phase-2 upgrade (2023-2025)

- ATLAS: New silicon tracker & forward calorimeter & electronics, Level-1 track trigger
- CMS: New tracker with Level-1 capability, DAQ/HLT upgrade, replace end-cap & forward calo; possibly extension of muon coverage & EM pre-shower system

Higgs Physics Goals of ATLAS and CMS

A wide Higgs physics program (e.g. Snowmass 2013 arXiv:14016081)

LHC:


- \Box "Rediscovery" of the Higgs boson in ZZ and $\gamma\gamma$ channels (2015)
- \Box Early cross section measurements with ZZ and $\gamma\gamma$ (2015)
- □ The 1st measurement of ttH coupling
- □ Searches for heavy BSM Higgs bosons
- □ Higgs boson couplings and mass at the 10% level
- □ Spin and CP at the 10% level

Higgs Physics Goals of ATLAS and CMS

HL-LHC:

- Precision measurements of Higgs boson couplings with sensitivity of 2-10%
- Precision measurement (1%) for the ratio of γγ and ZZ couplings
- Precision CP measurements
- Rare decays and couplings (μ⁺μ⁻ and Zγ with 100M Higgs bosons)
- □ Provide the 1st evidence of the Higgs boson pair production
- Extended search of BSM Higgs bosons

Cross Sections

(gg->HH MH=125 GeV)

Signal Strength Uncertainties $\Delta \mu / \mu$

L, fb ⁻¹		γ γ , %	WW	ZZ	bb	ττ	Ζγ	μμ	Invis.
300	ATLAS	[9,14]	[8,13]	[6,12]	-	[16,22]	[145,147]	[38,39]	-
	CMS	[6,12]	[6,11]	[7,11]	[11,14]	[8,14]	[62,62]	[40,42]	[17,28]
3000	ATLAS	[4,10]	[5,9]	[4,10]	-	[12,19]	[54,57]	[12,15]	-
	CMS	[4,8]	[4,7]	[4,7]	[5,7]	[5,8]	[20,24]	[20,24]	[6,17]

$$\mu = \sigma \times BR / (\sigma \times BR)_{SM}$$

ATLAS [1,2]:

- 1. Only current statistical and experimental systematic uncertainties
- 2. With theory systematic uncertainties

CMS [1,2]:

1. Theoretical uncertainties are scaled by a factor_

of 1/2, systematic uncertainties are scaled by $1/\sqrt{L}$

2. All current systematic uncertainties

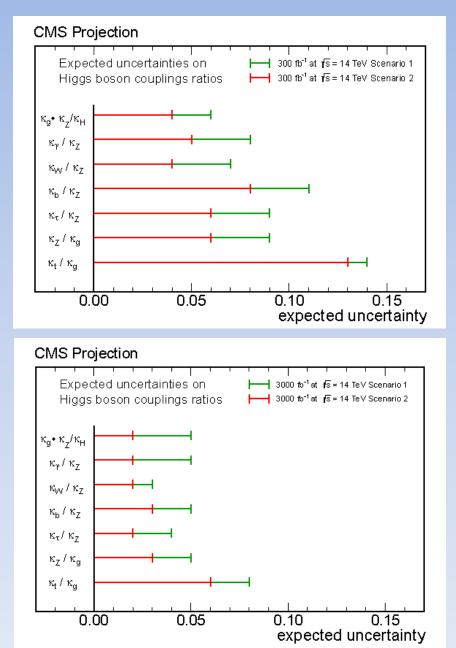
ATLAS Simulation Preliminary

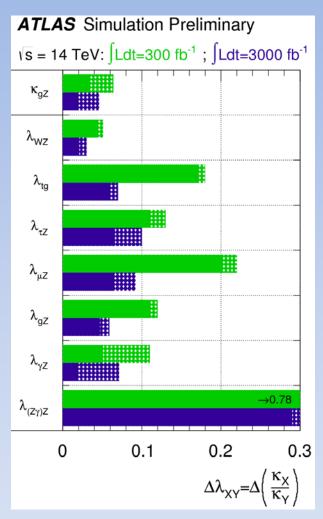
 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

13 = 14 100. jEat	-300 lb , jEdt=3000 lb
H→μμ (comb.)	
$H \rightarrow \tau \tau$ (VBF-like)	
$H \rightarrow ZZ$ (comb.)	
$H \rightarrow WW$ (comb.)	
$H \rightarrow Z\gamma$ (incl.)	→1.5
$H \rightarrow \gamma \gamma$ (comb.)	
	0 0.2 0.4
	Δμ/μ
	• •

Higgs Boson Couplings

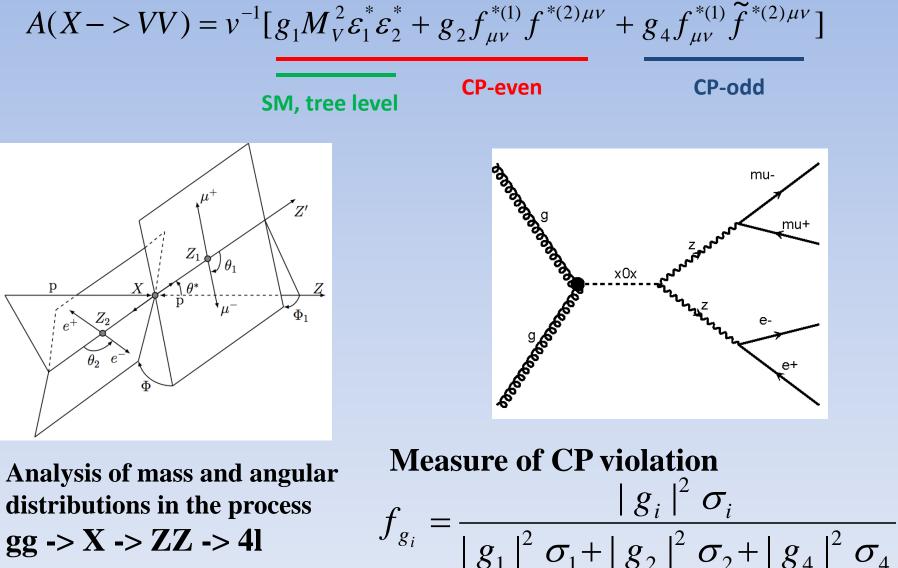
Snowmass 2013 arXiv:1401.6081

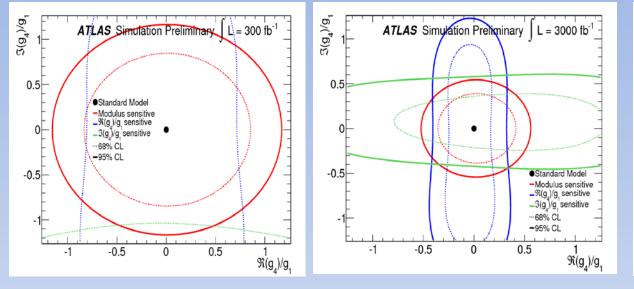

Coupling scale factors $\frac{\sigma \cdot BR(gg - > H - > \gamma\gamma)}{\sigma_{SM}(gg - > H) \cdot BR_{SM}(H - > \gamma\gamma)} = \frac{k_g^2 k_\gamma^2}{k_H^2}$ $k_H^2 = \sum_X k_X^2 \cdot BR_{SM}(H - > X)$ Assumptions: Only one and narrow Higgs resonance.


Tensor structure of SM.

Model	k _v , %	k _b , %	k _γ , %
Singlet Mixing	6	6	6
2HDM	1	10	1
Decoupling MSSM	-0.001	1.6	<1.5
Composite	-3	-(3-9)	-9
Top Partner	-2	-2	1

L		K _γ ,%	k _w	k _z	k _g	k _b	k _t	k _τ	k _{zγ}	k _μ
300	ATLAS	[8,13]	[7,8]	[7,8]	[9,11]	-	[20,22]	[13,18]	[78,79]	[21,23]
fb⁻¹	CMS	[5,7]	[4,6]	[4,6]	[6,8]	[10,13]	[14,15]	[6,8]	[41,41]	[23,23]
3000	ATLAS	[5,9]	[4,6]	[4,6]	[5,7]	-	[8,10]	[10,15]	[29,30]	[8,11]
fb⁻¹	CMS	[2,5]	[2,5]	[2,4]	[3,5]	[4,7]	[7,10]	[2,5]	[10,12]	[8,8]

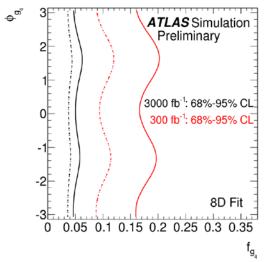

Higgs Boson Coupling Ratios

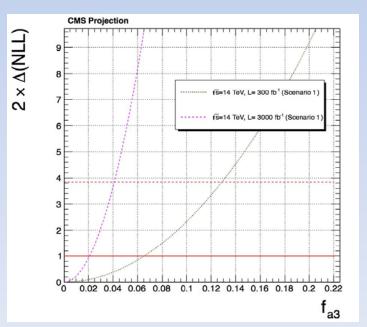

Good agreement between ATLAS and CMS.

HZZ vertex tensor structure

distributions in the process gg -> X -> ZZ -> 41

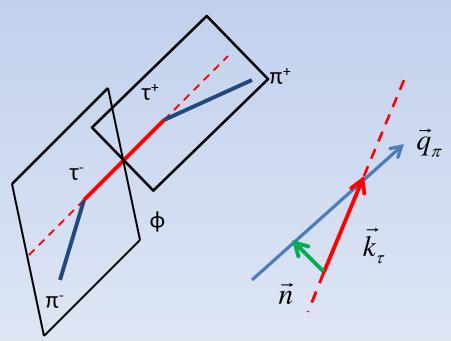
HZZ vertex tensor structure




At 95% CL :

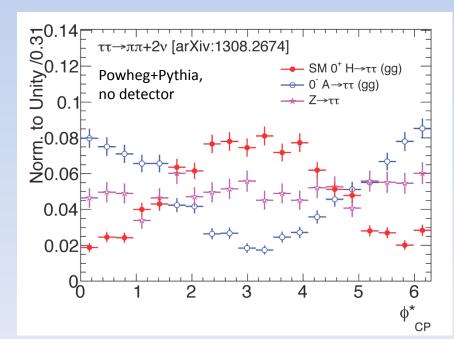
$$\sqrt{s} = 14TeV$$

 $f_{g4} < 0.58$ CMS (25 fb⁻¹, LHC Run I)

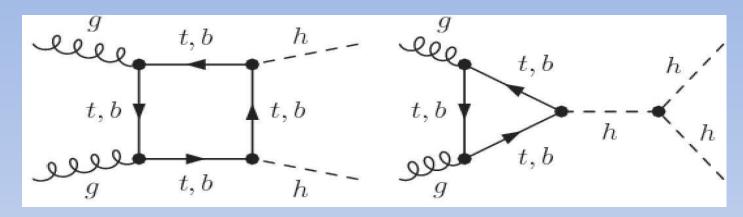

 $\label{eq:fg4} \begin{array}{l} \textbf{f}_{g4} < \textbf{0.15} \; (\textbf{0.05}) & \textbf{for 300 fb}^{-1} (\textbf{3000 fb}^{-1}) \\ & \text{Snowmass projection} \\ \textbf{f}_{g2} < \textbf{0.29} \; (\textbf{0.12}) & \textbf{for 300 fb}^{-1} (\textbf{3000 fb}^{-1}) \\ & \text{ECFA studies} \end{array}$

CP from H->τ⁺τ⁻ decay channel

- •Large branching ratio BR = 6.24%.
- •Access to CP at tree level.
- •Angular distributions of decay products are sensitive to spin correlations.
- CP-even, CP-odd, and mixed CP states can be distinguished.



$$L = (a\,\overline{\tau}\,\tau + ib\,\overline{\tau}\gamma_5\tau)X$$



$$r \rightarrow l v_l v_{\tau}, \pi v_{\tau}, \pi \pi^0 v_{\tau}, \pi 2\pi^0 v_{\tau}, 2\pi^{\pm} \pi^{\mp} v_{\tau}$$

$$\Phi_{CP}^* = \arcsin(\vec{q}_-^* \cdot (\vec{n}_T^{*+} \times \vec{n}_T^{*-}))$$

Higgs Boson self-coupling

One of the top priorities of Higgs boson physics. λ_{HHH} determines the shape of the Higgs potential. Large background. Destructive interference.

It's extremely challenging.
 High demands on detectors.
 Analysis should involve many channels.
 Combined ATLAS/CMS data

$\lambda_{ m HHH}$	σ(14 TeV), fb ⁻¹	σ(33 TeV), fb ⁻¹
λ_{SM}	34	207
0	71	414
$2\lambda_{ m SM}$	16	101

Important decay modes: bbττ and bbγγ.

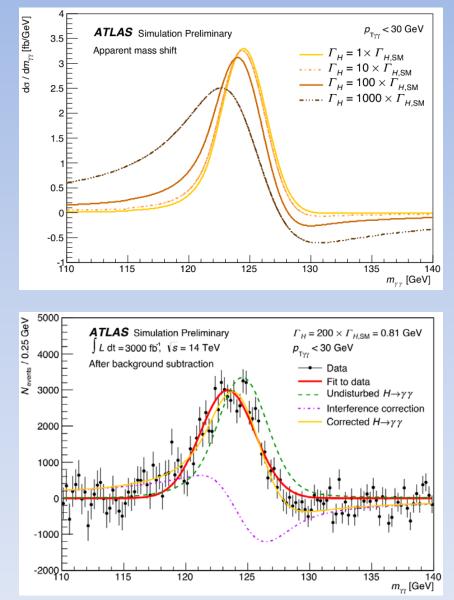
Studies are ongoing.

The double Higgs production cross section increases rapidly with energy.

Higgs boson width

New CMS result [arXiv:1405.3455] based on the Higgs boson off-shell production and decays H->ZZ->41, H->ZZ->212v:

 $\Gamma_{\rm H}$ < 22 MeV at the 95% CL .

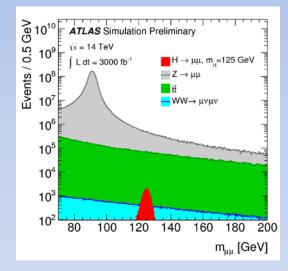

CMS direct width measurement from H->ZZ->41 [arXiv:1312.5353]: $\Gamma_{\rm H} < 3.4$ GeV at the 95% CL.

 $\gamma\gamma$ channel: $\Gamma_{\rm H} < 6.9 \text{ GeV CMS}$

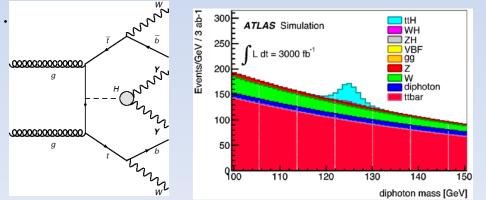
Interference between signal and background -> shift in peak position [arXiv:1305.3854]

 $\Gamma_{\rm H}$ < 880 MeV for 300 fb⁻¹

 $\Gamma_{\rm H}\,{<}\,160~MeV~$ for 3000 fb^-1


Rare decays H->μμ, H->Z γ and ttH coupling

(update will be available soon)


H-> $\mu^+\mu^-$: Direct probe of the H coupling to 2nd generation fermions.

Can contribute to mass measurements (high resolution 1-2% of $\mu^+ \mu^-$ invariant mass). Test of the ratio of 2nd to 3rd generation lepton couplings (m_{μ}^2 / m_{τ}^2 in SM LO). Low branching ratio BR=2.2[·]10⁻⁴. Very large background from Z/ γ^* .

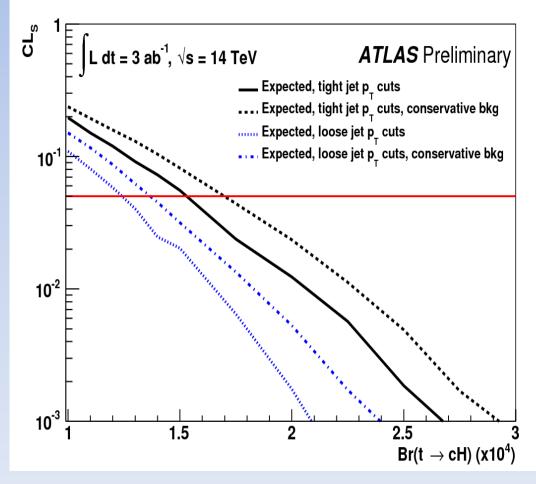
Η->μμ	L, fb ⁻¹	Signal significance	Δμ/μ , %
ATLAS	300	2.3σ	46
ATLAS	3000	7σ	21
CMS	3000	~5σ	8

ttH coupling plays a special role in studies of electroweak symmetry breaking $\sigma = 0.6$ pb at 14 TeV.

H->Z γ:

sensitive to new particles in loops (only charged particles in SM) 2.1 σ with 3000 fb⁻¹

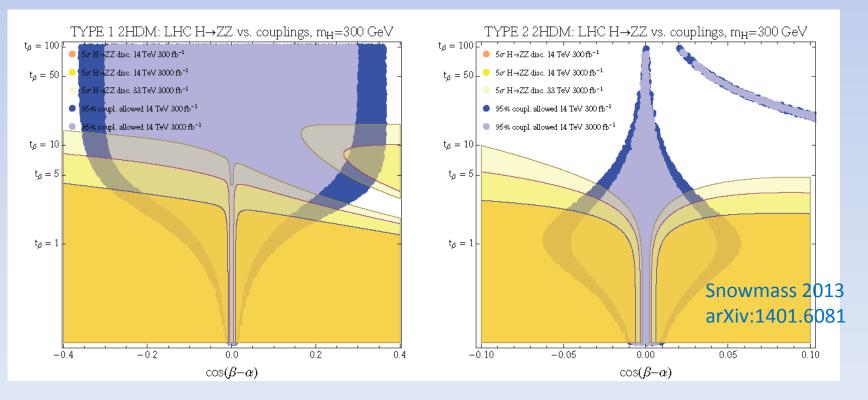
Flavor Changing Neutral Currents

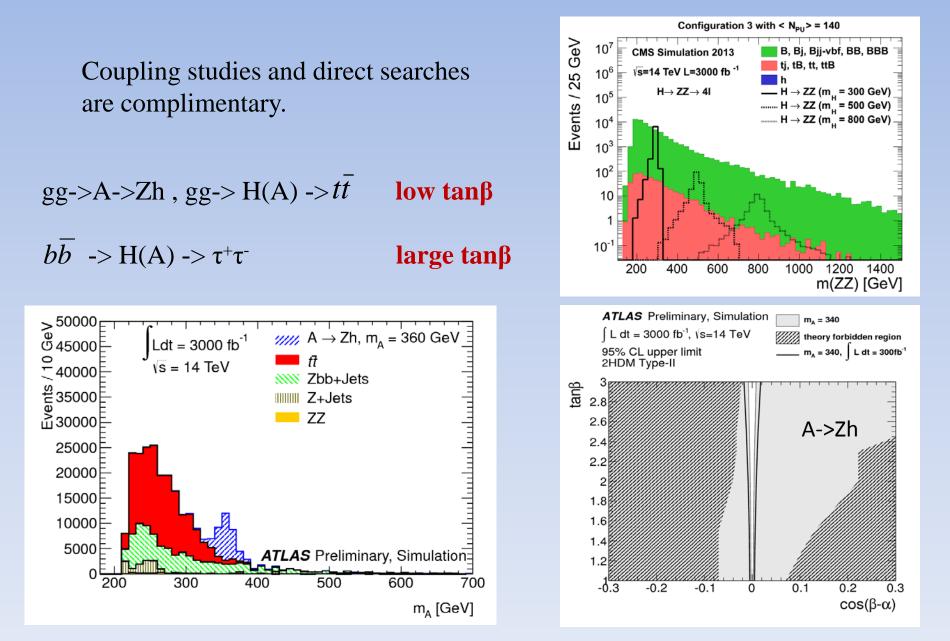

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
t->cH	3.10-15	4.1 .10 ⁻⁵	1.5 .10 ⁻³	~10 ⁻⁵	10-5

SM: FCNC decays are negligible.

Models with the extended Higgs sector, R-parity violating SUSY models: BR ~ 10⁻⁵ - 10⁻⁴

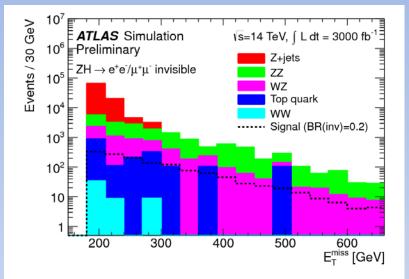
 $t\bar{t} \rightarrow WbHc \quad H \rightarrow \gamma\gamma$ Peak in $\gamma\gamma$ + jet system

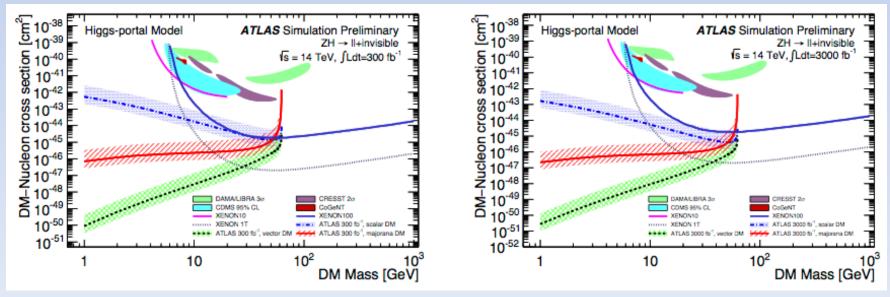

The expected upper limit at the 95% confidence level on BR, assuming a luminosity of 3000 fb⁻¹ (HL-LHC) at 14 TeV is $1.5 \cdot 10^{-4}$.


BSM Higgs Bosons

Strong motivation for existence of BSM Higgs bosons. Additional doublet -> H(CP even), A(CP odd), H⁺, and H⁻.

Region of parameters of 2HDM models expected to be excluded. The yellow regions show the 5σ reach in direct searches. The blue regions are allowed at 95% CL by coupling measurements.


BSM Higgs Bosons


Invisible Decays of the Higgs Boson

Direct search for the invisible decays of H in ZH->l⁺l⁻ + invisible

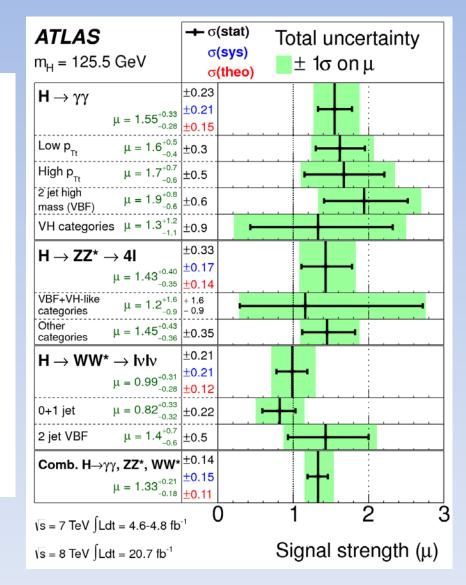
L, fb ⁻¹		BR(H->invis.)
300	ATLAS	[23,32]
	CMS	[17,18]
3000	ATLAS	[8,16]
	CMS	[6,17]

Strong constraints on Higgs-portal models

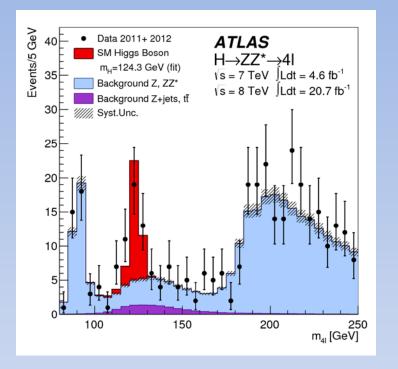
Conclusion

- □ So far all measurements are consistent with the SM expectations.
- □ The deviations up to 30% are possible in some models.
- The re-start of the LHC in 2015 is a beginning of a very rich program to clarify the nature of the Higgs boson.
- □HL-LHC is crucial for the precision Higgs boson physics.
 - Mass/Width
 - Couplings
 - Rare decays

Spin/Parity BSM Higgs Bosons TeV Scale

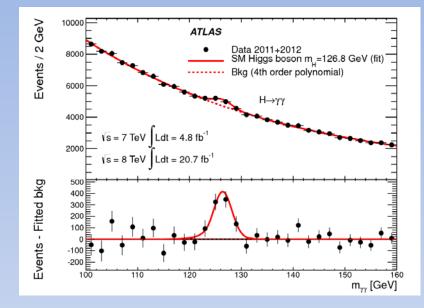

References

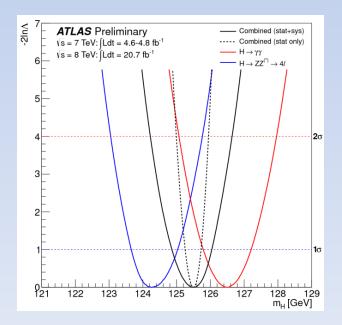
- 1. ATL-PHYS-PUB-2013-007, "Physics at a High-Luminosity LHC with ATLAS"
- 2. ATL-PHYS-PUB-2013-012, "Sensitivity of ATLAS at HL-LHC to flavour changing neutral currents in top quark decays t \rightarrow cH, with H $\rightarrow \gamma\gamma$ "
- 3. ATL-PHYS-PUB-2013-013, "Prospects for measurements of the HZZ vertex tensor structure in H \rightarrow ZZ* \rightarrow 4l decay channel with ATLAS"
- 4. ATL-PHYS-PUB-2013-014, "Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC"
- 5. ATL-PHYS-PUB-2013-015, "Sensitivity to New Phenomena via Higgs Couplings with the ATLAS Detector at a High-Luminosity LHC"
- 6. ATL-PHYS-PUB-2013-016, "Beyond-the-Standard-Model Higgs boson searches at a High-Luminosity LHC with ATLAS"
- 7. CMS-PAS-HIG-13-002, "Properties of the Higgs-like boson in the decay H->ZZ->4l in pp collisions at sqrt(S)=7 and 8 TeV"
- 8. CMS-PAS-HIG-13-005, "Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV"
- 9. CMS-PAS-HIG-13-015, "Search for ttH production in events where H decays to photons at 8 TeV collisions"
- 10. CMS-PAS-HIG-14-002, "Constraints on the Higgs boson width from off-shell production and decay to ZZ ->III'I' and Ilnunu"
- 11. arXiv:1209.0040, "LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle"
- 12. arXiv:1305.3854, "Bounding the Higgs Boson Width Through Interferometry"
- 13. arXiv:1307.7135, "Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process"
- 14. arXiv:1308.2674, "Higgs CP properties using the tau decay modes at the ILC"
- 15. arXiv:1309.4819, "Constraining anomalous HVV interactions at proton and lepton colliders"
- 16. arXiv:1310.8361, "Higgs Working Group Report of the Snowmass 2013 Community Planning Study"
- 17. arXiv:1401.6081, "Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier"

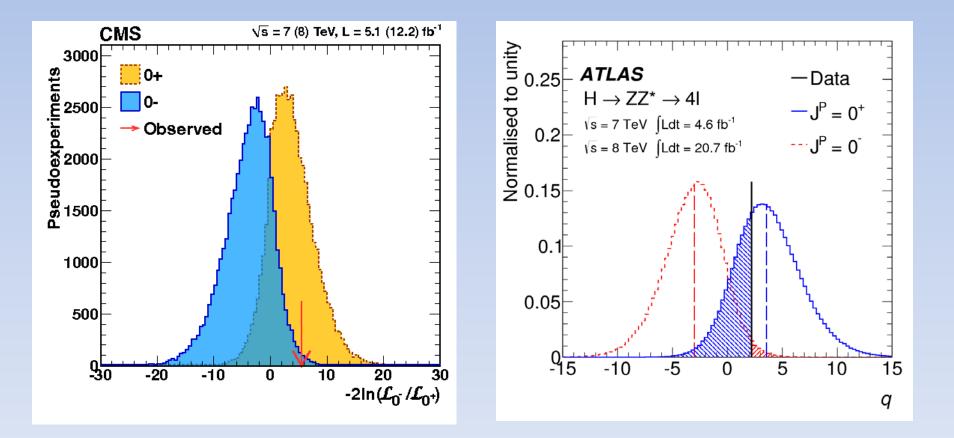

Higgs Boson Results

2

 \sqrt{s} = 7 TeV, L \leq 5.1 fb⁻¹ \sqrt{s} = 8 TeV, L \leq 19.7 fb⁻¹ CMS Preliminary Individual Results $V H \rightarrow bb arXiv:1310.3687$ μ (m_=125.0 GeV) = 1.0 ± 0.5 $H \rightarrow \tau \tau$ arXiv:1401.5041 μ (m_=125.0 GeV) = 0.78 ± 0.27 $H \rightarrow \gamma \gamma$ HIG-13-001 μ (m_=125.0 GeV) = 0.78 ± 0.27 $H \rightarrow WW$ arXiv:1312.1129 μ (m_=125.6 GeV) = 0.72 ± 0.19 $H \rightarrow ZZ$ arXiv:1312.5353 μ (m_=125.6 GeV) = 0.93 ± 0.27 1.5 0.5 0 Best fit σ/σ_{SM}




Mass Measurement


Combined mass ($\gamma\gamma$, ZZ ATLAS): $M_{H} = 125.5 \pm 0.2(stat)^{+0.5}_{-0.6}(syst)$ GeV Combined mass ($\gamma\gamma$, ZZ, WW, bb, $\tau\tau$ CMS):

$$M_{H} = 125.7 \pm 0.3(stat) \pm 0.3(syst) \,\text{GeV}$$

Higgs Boson J^P

