

Overview of the Higgs boson studies at Tevatron

Lídíja Žívkovíć, Instítute of Physics, Belgrade

collaborations

Outline

- Brief analyses overview
- Tevatron results
 - Combined results
 - Constraints on couplings

• Spin/parity studies

INSTITUTE OF PHYSICS BELGRADE

σ(pp→H+X) [fb]

10³

10²

10

1

Production at Tevatron ...

- Dominant production is gluongluon fusion (ggH)
- Significant contribution from associated production (VH)

Pp→H (NNLO+NNLL QCD + NLO EW)

(d)

175

200

225

250

^{Pp→WH} (NNLO QCD + NLO EW) (C) WH

Pp→tiH (NLO QCD)

125

ttH

150

Different from LHC

100

L. Ž. Higgs boson at Tevatron

Tevatron

^(a) ggH

... and Decay

- Dominant decay to:
 - bb for m_{μ} < 135 GeV (57% @125 GeV)
 - WW for m_{μ} > 135 GeV (22% @125 GeV)

yy and ZZ are discovery channels @LHC

May 21, 2014

L. Ž. Higgs boson at Tevatron

Overview of the searches from Tevatron

NSTITUTE OF PHYSICS

BELGRADE

DØ	Luminosity (fb ^{-*})	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012)
			and Phys. Rev. D 88, 052008 (2013)
$ZH \rightarrow \ell \ell b \bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)
			and Phys. Rev. D 88, 052010 (2013)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100 - 150	Phys. Lett. B 716, 285 (2012)
$H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$	9.7	100 - 200	Phys. Rev. D 88, 052006 (2013)
$H + X \to WW \to \mu^{\pm}\tau_h^{\mp} + \le 1$ jet	7.3	155 - 200	Phys. Lett. B 714, 237 (2012)
$H \rightarrow W^+W^- \rightarrow \ell \nu q' \bar{q}$	9.7	100 - 200	Phys. Rev. D 88, 052008 (2013)
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	100 - 200	Phys. Rev. D 88, 052009 (2013)
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100 - 200	Phys. Rev. D 88, 052009 (2013)
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100 - 200	Phys. Rev. D 88, 052008 (2013)
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100 - 150	Phys. Rev. D 88, 052009 (2013)
$H + X \rightarrow \ell \tau_h j j$	9.7	105 - 150	Phys. Rev. D 88, 052005 (2013)
$H \rightarrow \gamma \gamma$	9.7	100 - 150	Phys. Rev. D 88, 052007 (2013)
CDF			
$WH \rightarrow \ell \nu bb$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell \ell b \bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$	9.7	110 - 200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow WW \rightarrow e\tau_h \mu \tau_h$	9.7	130 - 200	Phys. Rev. D88, 052012 (2013)
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	110 - 200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow \tau \tau$	6.0	100 - 150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100 - 150	Phys. Lett. B 717, 173 (2012)
$H \rightarrow ZZ \rightarrow llll$	9.7	120 - 200	Phys. Rev. D 86 072012 (2012)
$t\bar{t}H \rightarrow WWb\bar{b}b\bar{b}$	9.45	100 - 150	Phys. Rev. Lett. 109 181802 (2012)
$VH \rightarrow jjb\bar{b}$	9.45	100 - 150	JHEP 1302 004 (2013)

• CDF combination:

 $H \rightarrow bb$:

- Phys. Rev. Lett. 109, 111802 (2012) All channels:
- Phys. Rev. D88 052013 (2013)

May 21, 2014

- D0 combination:
 - $H \rightarrow bb$:
 - Phys. Rev. Lett. 109, 121802 (2012)
 - All channels:
 - Phys. Rev. D 88, 052011 (2013)
- L. Ž. Higgs boson at Tevatron

Overview of the searches from Tevatron

	DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
	$WH \rightarrow \ell \nu bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121804 (2012)
	$ZH \rightarrow \ell \ell b \bar{b}$	9.7	90-150	and Phys. Rev. D 88, 052008 (2013) Phys. Rev. Lett. 109, 121803 (2012)
				and Phys. Rev. D 88, 052010 (2013)
\mathbf{i}	$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100 - 150	Phys. Lett. B 716, 285 (2012)
	$H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$	9.7	100 - 200	Phys. Rev. D 88, 052006 (2013)
	$H + X \to WW \to \mu^{\pm}\tau_h^{\mp} + \leq 1$ jet	7.3	155 - 200	Phys. Lett. B 714, 237 (2012)
	$H \rightarrow W^+W^- \rightarrow \ell \nu q' \bar{q}$	9.7	100 - 200	Phys. Rev. D 88, 052008 (2013)
	$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100 - 200	Phys. Rev. D 88, 052009 (2013)
	$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100 - 200	Phys. Rev. D 88, 052009 (2013)

Tevatron combination: Phys. Rev. D 88, 052014 (2013)

All latest papers are in a single issue of PRD

$ZH \rightarrow \ell \ell b \bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$	9.7	110 - 200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow WW \rightarrow e\tau_h \mu \tau_h$	9.7	130 - 200	Phys. Rev. D88, 052012 (2013)
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	110 - 200	Phys. Rev. D88, 052012 (2013)
$H \rightarrow \tau \tau$	6.0	100 - 150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100 - 150	Phys. Lett. B 717, 173 (2012)
$H \rightarrow ZZ \rightarrow llll$	9.7	120 - 200	Phys. Rev. D 86 072012 (2012)
$t\bar{t}H \rightarrow WWb\bar{b}b\bar{b}$	9.45	100 - 150	Phys. Rev. Lett. 109 181802 (2012)
$VH \rightarrow jjb\bar{b}$	9.45	100 - 150	JHEP 1302 004 (2013)

• CDF combination:

 $H \rightarrow bb$:

- Phys. Rev. Lett. 109, 111802 (2012) All channels:
- Phys. Rev. D88 052013 (2013)

May 21, 2014

• D0 combination:

 $H \rightarrow bb$:

- Phys. Rev. Lett. 109, 121802 (2012)
- All channels:
- Phys. Rev. D 88, 052011 (2013)

$VH \rightarrow Vbb$

- $ZH \rightarrow IIbb 2 leptons + 2 b-jets$
- Modeling of the Z+jets background; rejection of the tt background
- WH \rightarrow lvbb 1 lepton + MET + 2 b-jets
- Modeling of the W+jets backgrounds
- Modeling and rejection of the multijet backgrounds

- ZH → vvbb MET + 2 b-jets (contribution from WH also)
- Background modeling and rejection

$VH \rightarrow Vbb$

86.0e

E0.96

- Lepton, jet and \mathbb{E}_{τ} reconstruction
- Jet energy resolution => $\Delta m/m \sim 15\%$
- b-tagging
- Multivariate techniques to reject

NSTITUTE OF PHYSICS BELGRADE

Validation of results

- Measure cross section of the known process with the same final state
 - Smaller cross section for Higgs production (~7 times)
 - Diboson signal peaks at lower masses

Measured cross section: (0.68±0.21)*5M

Apply similar analysis

 $VH \rightarrow Vbb$ [fb] MH = 125 GeV $VZ \rightarrow Vbb$ [fb] vvbb 73 9 lvbb 105 16 llbb 24 3 28 202 **Total**

May 21, 2014

L. Ž. Higgs boson at Tevatron

400

350

- VH \rightarrow Vbb:
 - Expected sensitivity at m_{μ} ~125 GeV of 1.42×5M.
 - Broad excess consistent with dijet mass resolution
 - Best fit (σ_{WH} + σ_{ZH}) × $\mathcal{B}(H \rightarrow bb)$ = $0.19^{+0.08}_{-0.09}$ pb @125 GeV
 - To be compared with SM: ($\sigma_{WH} + \sigma_{ZH}$) × $\mathcal{B}(H \rightarrow bb)$ = 0.12±0.01 pb

May 21, 2014

Result of the SM combination

- Tevatron excludes (expect): 90-109 (90-120) GeV and 149-182 (140-184) GeV @95% C.L.
- Exp. (obs) sensitivity @125 GeV: 1.06 (2.44)*SM

Sensitivity of the search

• Observed broad excess in data

INSTITUTE OF PHYSICS

BELGRADE

Sensitivity of the search

• Observed broad excess in data

- Consistent with the assumption of the presence of the Higgs boson with a $\rm m_{_H}$ =125 GeV and a cross section of ~1.5(±0.6)*SM

NSTITUTE OF PHYSICS

BELGRADE

INSTITUTE OF PHYSICS BELGRADE

p-value for background hypothesis

- p-value for background hypothesis provides information about the consistency with the observed data
- Local p-value distribution for background only expectation:
 3 s.d. (@125 GeV)

May 21, 2014

Signal Strength

- Best fit for the signal, signal strength, is consistent with SM within 1 s.d.
- @125 GeV: 1.44^{+0.59}_{-0.56}

May 21, 2014

L. Ž. Higgs boson at Tevatron

Higgs boson couplings to bosons andfermions $\sigma(gg \rightarrow H) = \sigma_{SM}(gg \rightarrow H)(0.95\kappa_f^2 + 0.05\kappa_f\kappa_V)$

- Several production and decay mechanisms contribute to signal rates per channel => interpretation is difficult
- Simplified model, SM-like with the following:
 - Hff couplings are scaled together by $\kappa_{_{\rm f}}$
 - HWW coupling is scaled by $\kappa_{\rm w}$
 - HZZ coupling is scaled by $\kappa_{\rm Z}$
 - For some studies, we scale the HWW and HZZ couplings by $\kappa_w = \kappa_z = \kappa_v$
- Standard Model is recovered if $\kappa_f = \kappa_w = \kappa_7 = 1$

17

May 21, 2014

L. Ž. Higgs boson at Tevatron

Ϋ́

4

2

0

-2

-4

0

Tevatron Run II, $L_{int} \leq 10 \text{ fb}^{-1}$

95% C.L.

 $\lambda_{wz}=1$

Local maxima 🔺 SM

68% C.L.

0.5

1

1.5

- Couplings to fermions ($\kappa_w = \kappa_z = 1$): $\kappa_f = -2.64^{+1.59}_{-1.30}$
- Couplings to bosons $(\kappa_f = \kappa_{Z \text{ or } W} = 1)$:

 $\kappa_W = -1.27^{+0.46}_{-0.29}$ second interval 1.04 < $\kappa_W < 1.51$ $\kappa_Z = \pm 1.05^{+0.45}_{-0.55}$

- For custodial symmetry: $|\theta_{WZ}| = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$
- Assuming that custodial symmetry holds,

$$\Lambda_{WZ}$$
 = 1, allow both κ_v and κ_f to vary

- Asymmetry is from the excesses in the H \rightarrow $\gamma\gamma$
- Two minima: $(\kappa_v, \kappa_f) = (1.05, -2.40)$ and $(\kappa_v, \kappa_f) = (1.05, 2.30)$

OF PHYSICS

BELGRADE

L. Ž. Higgs boson at Tevatron

2

 κ_V

Spin (J) and Parity (P)

Motivation

- Standard Model predicts Higgs boson with J^P = O⁺
 - The H \rightarrow yy excludes J=1 (Landau-Yang theorem)
- Studied:
 - $J^{P} = O^{-} pseudoscalar from 2HDM, SUSY, etc$
 - $J^{P} = 2^{+} graviton$, RS model assumed
- Different spin and parity states manifest in various ways
 - Angles of decay products
 - Cross section behavior at threshold:
 - s-wave for 0^+ : $\sigma \sim \beta$
 - p-wave for O^{-} : $\sigma \sim \beta^{3}$
 - d-wave for 2^+ : $\sigma \sim \beta^5$
- VH production at Tevatron is sensitive to threshold effects

Spin and Parity at Tevatron

- Main discrimination variable: total mass of the V+X system (X is 0⁺, 0⁻ or 2⁺)
 - In a case of V \rightarrow lv or V \rightarrow vv total transverse mass is a better choice
- Use published VH \rightarrow Vbb analyses and compare SM process with the new hypothesis

Selection

Divide samples into low and high purity

INSTITUTE OF PHYSICS

BELGRADE

Results

- Build log-likelihood ratio test: LLR= -2 log(H₁/H₀)
 - H_0 is the SM Higgs (0⁺) + Bkg
 - H_1 is either O⁻ + Bkg or 2⁺ + Bkg
- $J^{P}=0^{-}$ excluded at the 97.9% C.L.
- $J^{P}=2^{+}$ excluded at the 99.2% C.L.

Signal Admixtures

- Allow possibility of both a $O^{-}(2^{+})$ and O^{+} signal in data
- Vary fraction f_x from 0 to 1 $f_X = \frac{\sigma_X}{\sigma_X + \sigma_{0^+}}$ $- H1: \mu \times (\sigma \times \hat{B})_{SM} \times [2^+ \times f_{2^+} + 0^+ \times (1 - f_{2^+})] + Background$ $- H0: \mu \times (\sigma \times \hat{B})_{SM} \times 0 + Background (pure 0^+)$

Summary

- Tevatron has ended its 25 years' run on September 30th 2011
 It ran more than 9 years at √s = 1.96 TeV and delivered almost 12 fb⁻¹ during that period
- Achievements:
 - First post-LEP exclusion
 - First evidence for H->bb
 - Almost 1xSM exclusion sensitivity over the full range (110-185 GeV)
- With final results observed broad excess in low mass range

- Signal strengths in all analyzed decay channels are consistent with SM Higgs expectation
- Results on Higgs couplings are also consistent with the SM predictions
- Spin and parity studies in VH → Vbb are underway D0 is close to publication, CDF and Tevatron still to come

May 21, 2014

Higgs boson couplings to bosons and fermions

- Follow the prescription from LHC Higgs cross section working group: arXiv:1209.0040
- Basic assumptions:
 - There is only one underlying state at $m_{_{\rm H}}{\sim}125~GeV$
 - It has negligible width
 - It is a CP even scalar (only allow for modification of coupling strengths, leaving the Lorentz structure of the interaction untouched)
 - No additional invisible or undetected Higgs decay modes

Higgs boson couplings to bosons and fermions

- Several production and decay mechanisms contribute to signal rates per channel => interpretation is difficult
- Simplified model, SM-like with the following:
 - Hff couplings are scaled together by $\kappa_{_{\rm f}}$
 - HWW coupling is scaled by κ_w
 - HZZ coupling is scaled by $\kappa_{\rm Z}$
- For some studies, we scale the HWW and HZZ couplings by $\kappa_w = \kappa_z = \kappa_v$
- Standard Model is recovered if $\kappa_f = \kappa_w = \kappa_7 = 1$

Constraining couplings

- Scale cross sections for each process according to couplings $\sigma(gg \to H) = \sigma_{SM}(gg \to H)(0.95\kappa_f^2 + 0.05\kappa_f\kappa_V)$ $\sigma(VH, VBF) = \sigma_{SM}(VH, VBF)\kappa_V^2$
- Recompute all Higgs boson decay branching ratios from scaled partial widths $\Gamma(H \to VV) = \Gamma(H \to VV)_{SM} \kappa_V^2; (V = W, Z)$ $\mathcal{BR}(H \to XX) = \frac{\Gamma(H \to XX)}{\Gamma_{TOT}}$ $\Gamma(H \to ff) = \Gamma(H \to ff)_{SM} \kappa_f^2$ $\Gamma(H \to gg) = \Gamma(H \to gg)_{SM}(0.95\kappa_f^2 + 0.05\kappa_f\kappa_V)$ $\Gamma(H \to \gamma \gamma) = \Gamma(H \to \gamma \gamma)_{SM} |\alpha \kappa_V + \beta \kappa_f|^2$

α=1.28; β=-0.28;

from Spira et al. arXiv:hep-ph/9504378

=> $H \rightarrow \gamma \gamma$ from destructive interference between the two contributions - If any of the couplings is negative, interference becomes constructive

=> Larger rate of the $H \rightarrow \gamma \gamma$

- Posterior probability distributions (a) vary $\kappa_w (\kappa_z = \kappa_f = 1)$
 - A negative sign of $\kappa_{\!_W}$ is preferred by the
 - Tevatron data due to the excess in $H \to \gamma \gamma$
 - Best fit: $\kappa_w = -1.27$

(b) vary
$$\kappa_{Z} (\kappa_{W} = \kappa_{f} = 1)$$

- Searches at the Tevatron are sensitive almost exclusively to $(\kappa_z)^2$ so the posterior
 - density is nearly symmetric
- Best fit: $\kappa_7 = \pm 1.05$
- (c) vary $\kappa_f (\kappa_W = \kappa_Z = 1)$
- Asymmetry due to H \rightarrow $\gamma\gamma$
- Best fit: $\kappa_f = -2.64$ (large due to the

excesses in $H \rightarrow \gamma \gamma$ and $VH \rightarrow Vbb$)

BELGRADE

- Both κ_w and κ_z vary independently
 - κ_{f} integrated over
 - Best fit: $(\kappa_w, \kappa_z) = (1.25, \pm 0.90)$
- The point $(\kappa_w, \kappa_z) = (0, 0)$ corresponds to no Higgs boson production or decay in the most sensitive search modes at the Tevatron and is excluded at more than 95% C.L. region due to the significant excess of events in the SM Higgs boson searches @ 125 GeV

- Probe SU(2)_v custodial symmetry by measuring the ratio $\Lambda_{wz} = \kappa_w / \kappa_z$
 - Measure θ_{WZ} =tan⁻¹(κ_Z/κ_W)=tan⁻¹($1/\lambda_{WZ}$) - Measure: $|\theta_{WZ}| = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$
- Consistent with Standard model and with LHC measurements: 95% CL interval for Λ_{WZ} : [0.62,1.19] (CMS) 68% CL interval for Λ_{WZ} : [0.61, 1.04] (ATLAS)

L. Ž. Higgs boson at Tevatron

- Assuming that custodial symmetry holds, $\Lambda_{WZ} = 1$, allow both κ_v and κ_f to vary
- Asymmetry is from the excesses in the H \rightarrow $\gamma\gamma$
- Two minima: $(\kappa_v, \kappa_f)=(1.05, -2.40)$ and $(\kappa_v, \kappa_f) = (1.05, 2.30)$
- The integral of the posterior density in the (+,+) quadrant is 26% of the total, while the remaining 74% of the integral of the posterior density is contained within the (+,-) quadrant

$H \rightarrow WW result$

- Both DO and CDF reached similar sensitivity:
 - Exclusion (expected): 149-172 (153-175) and 157-178 (155-175) GeV
 @CDF and DO
 - Sensitivity: exp 3.1; obs 2.9 and exp 2.9; obs 4.6 (@125 GeV)
 - Big gain when additional final states are included (15% at DO)
- Tevatron: Expected sensitivity @125 GeV: 2.04x5M

- The separation between LLR_b (background-only hypothesis) and LLR_{s+b} (signal-plus-background hypothesis) provides a measure of the discriminating power of the search
- The width of the LLR_b, distribution (1 s.d. and 2 s.d. bands) provides an estimate of how sensitive the analysis is to a signal-like background fluctuation in the data, taking account of the presence of systematic uncertainties
- The value of LLR_{obs} relative to LLR_{s+b} and LLR_b indicates whether the data distribution appears to be more like signal-plus-background or background-only.

$H \rightarrow \gamma\gamma$ and $H \rightarrow \tau\tau$

- $H \rightarrow \gamma \gamma$
 - Expected sensitivity @125 GeV of ~5.9*SM
 - ~ 2 s.d. excess in H $\rightarrow \gamma\gamma$

- Expected sensitivity @125 GeV of ~5.7*SM

Comparison of Tev and LHC Methods

- Signal scaling
 - Tevatron: signals fixed in both hypotheses
 - 2+ normalization does vary when setting 95% C.L. upper limits
 - Exclude μ > 0.73 at 95% C.L. in this case
 - LHC: signals fixed to best fit values in each hypothesis (need not be equal)
- Systematic uncertainties
 - Tevatron varies systs. in pseudoexperiments
 - LHC does not vary systs. in PEs
 - Allow systematic uncertainties to vary in pseudoexperiments
 - (LHC first fits signals to data for normalization, thereby constraining systematics)

Tevatron H→bb Results PRL 109,071804(2012)

- Last Summer:
 - σ_{VH}=0.23±0.09 pb (SM: 0.12±0.01pb) @125 GeV
- Now:

 $-\sigma_{_{V\!H}}$ =0.19+-0.09 pb, consistent with the summer results

- The shift in this result is due to the updated $ZH \rightarrow vvbb$ analysis from CDF and corresponds to a change in the central value of 0.6 times the total uncertainty, consistent with the difference expected given the observed changes in the CDF ZH $\rightarrow vvbb$

