31st Rencontres de Blois on particle physics and cosmology

"Results from protonlead and fixed-target collisions at LHCb"

<u>Elisabeth Niel</u>

On behalf of the LHCb collaboration

Laboratoire de l'Accélérateur Linéaire d'Orsay

LHCb heavy ions latest results

Heavy Flavour production in pPb and PbPb

- > Λ_c production in *p*Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [arXiv:1809.01404, JHEP 02 (2019) 102]
- > B^+ , B^0 and Λ_b^0 production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV [arXiv: 1902.05599 , Phys. Rev. D 99, 052011 (2019)]
- Y(nS) production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV [arXiv:1810.07655v2 , 10.1007/JHEP11(2018)194]
- \succ Exclusive photonuclear J/ψ production in ultra-peripheral PbPb collisions [LHCb-CONF-2018-003]

Fixed target mode (unique at LHC)

 $> J/\psi$ and D^0 production cross-section in *p*He collisions [arXiv:1810.07907, Phys. Rev. Lett. 122, 132002 (2019)]

> Anti-proton production in pHe [arXiv:1808.06127, Phys. Rev. Lett. 121, 222001 (2018)]

The LHCb experiment

(acceptance $2 < \eta < 5$)

[IJMPA 30 (2015) 1530022] [JINST 3 (2008) S08005]

LHCb heavy ion : proton lead modes

Forward region:

- $y^* = y_{lab} 0.465$
- *p*Pb: 1.5 < y < 4.0

Backward region:

- $y^* = -(y_{lab} + 0.465)$
- Pbp: -5.0 < y < -2.5

*p*Pb and Pb*p* 2013 data : $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $1.1 nb^{-1} (Fwd), 0.5 nb^{-1} (Bwd)$ 2016 data : $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ $13.6 nb^{-1} (Fwd), 20.8 nb^{-1} (Bwd)$ **Pb-Pb**

2015 data : $\sqrt{s_{NN}} = 5 \text{ TeV}$, $10 \ \mu b^{-1}$ 2018 data : $\sqrt{s_{NN}} = 5 \text{ TeV}$, $210 \ \mu b^{-1}$

Physics motivations:

- Allow us to study QGP
- Study of cold nuclear matter effects and their disentangling from QGP effects
- Sensitivity to small x (down to ~ 10⁻⁵) → gluon saturation and to anti-shadowing region

Λ_c production in *p*Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Measurements of the differential cross-section and the forward- backward production ratio

- Larger production rate in the backward rapidity region compared to the forward region observed
- The total measured cross-section (integrated over the full kinematic range) is :

 $\begin{aligned} &\sigma(2 < p_{\rm T} < 10 \,\text{GeV}/c, \quad 1.5 < y^* < 4.0) &= 32.1 \pm 1.1 \pm 3.2 \,\text{mb}, \\ &\sigma(2 < p_{\rm T} < 10 \,\text{GeV}/c, -4.5 < y^* < -2.5) &= 27.7 \pm 1.8 \pm 3.9 \,\text{mb}. \end{aligned}$

[JHEP 02 (2019) 102] [LHCb-PAPER-2018-021]

Λ_c production in *p*Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

• Forward-backward production ratio consistent with calculations from Helac-ONIA with nuclear PDF [Computer Physics Communications 184 (2013) pp. 2562-2570].

 $R_{\rm FB}(y^*, p_{\rm T}) \equiv \frac{{\rm d}^2 \sigma(y^*, p_{\rm T}; y^* > 0) / {\rm d}y^* {\rm d}p_{\rm T}}{{\rm d}^2 \sigma(y^*, p_{\rm T}; y^* < 0) / {\rm d}y^* {\rm d}p_{\rm T}}$

 Ratio with D⁰ production to probe heavy quark hadronization in heavy ion collisions

 Ratio to D⁰ production also consistent with nuclear PDF computations

[JHEP 02 (2019) 102, LHCb-PAPER-2018-021] ⁶

B^+, B^0 and Λ_b^0 production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

- B^+ , B^0 and Λ_b^0 production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- Measurement of differential cross section, forward-backward R_{FB} ratios and nuclear modification factors R_{pPb} for B^+, B^0 and Λ_b^0 in *p*Pb collisions

Signal	yiel	ds
<u> </u>	/	

Decay	$p\mathrm{Pb}$	$\operatorname{Pb} p$
$B^+ ightarrow \overline{D}{}^0 \pi^+$	1958 ± 54	1806 ± 55
$B^+ \to J/\psi K^+$	883 ± 32	907 ± 33
$B^0 \rightarrow D^- \pi^+$	1151 ± 38	889 ± 34
$\Lambda^0_b \!\to \Lambda^+_c \pi^-$	484 ± 24	399 ± 23

[Phys. Rev. D 99, 052011 (2019), LHCb-PAPER-2018-048]

B^+, B^0 and Λ_b^0 production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

 $R_{pPb}(p_{T}, y) \equiv \frac{1}{A_{Pb}} \frac{d^2 \sigma_{pPb}(p_{T}, y)/dp_{T} dy}{d^2 \sigma_{pp}(p_{T}, y)/dp_{T} dy}$

- Consistent with R_{pA} of D^0 mesons [JHEP (102017)90]
- Confirm the nuclear suppression seen with non- prompt J/ψ [Phys. Lett. B Volume 774, (2017)]
- Significant suppression in forward rapidity, decreasing at large p_T
- Consistent with unity at backward rapidity

Nuclear modification factor vs. p_T

Differential cross section for B^+ vs. p_T

Experimental uncertainties are smaller than the nPDF, provides constrains for future nPDFs fits.

[Phys. Rev. D 99, 052011 (2019), LHCb-PAPER-2018-048]

$\Upsilon(nS)$ production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16 TeV$

[10.1007/JHEP11(2018)194, LHCb-PAPER-2018-035]

At the first three resonances, the Upsilon system can only decay by the *b* quark and anti *b* quark annihilating. Here the $\Upsilon(nS)$ mesons are reconstructed through their decays into two opposite-sign muons.

$\Upsilon(nS)$ production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16 \ TeV$

 $\Upsilon(2S)$

- Cross sections integrated over y^* .
- No direct measurement in pp at 8.16 TeV: the value of the $\Upsilon(nS)$ cross-section is obtained by interpolation between the values measured in pp at 2.76, 7, 8 and 13 TeV.

 $\Upsilon(nS)$ suppressed in the forward region as already seen for J/ψ [Phys. Lett. B Volume 774, (2017)]

[10.1007/JHEP11(2018)194, LHCb-PAPER-2018-035]

$\Upsilon(nS)$ production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16 TeV$

[10.1007/JHEP11(2018)194, LHCb-PAPER-2018-035]

- The nuclear modification factor are evaluated for $\Upsilon(1S)$ and $\Upsilon(2S)$.
- Two different theoretical calculations are shown, here HELAC-Onia framework + nPDFS.

For $\Upsilon(1S)$: consistent with unity for $p_T > 10 \ GeV/c$ with a suppression at low p_T (0.5 forward and 0.8 backward)

For $\Upsilon(2S)$: smaller values, which is still consistent with the comovers model

$\Upsilon(nS)$ production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16 TeV$

$\Upsilon(nS)$ production in pPb collisions at $\sqrt{s_{NN}} = 8.16 \ TeV$

Double ratios

$\Re^{\Upsilon(nS)/\Upsilon(1S)}_{(p\mathrm{Pb} \mathrm{Pb}p)/pp} =$	$R(\Upsilon(nS))_{p\mathrm{Pb} \mathrm{Pb}p}$
	$\overline{R(\Upsilon(nS))_{pp}}$

	Sample	$R(\Upsilon(2S))$	$R(\Upsilon(3S))$
pp	$2.0 < y^* < 4.0$	0.328 ± 0.004	0.137 ± 0.002
pp	$-4.5{<}y^*{<}{-}2.5$	0.325 ± 0.004	0.137 ± 0.002
p P b	$2.0 < y^* < 4.0$	0.282 ± 0.050	0.11 ± 0.02
$\mathrm{Pb}p$	$-4.5{<}y^*{<}{-}2.5$	0.296 ± 0.070	0.06 ± 0.02

$$\begin{split} \Re_{p\mathrm{Pb}/pp}^{\Upsilon(2S)/\Upsilon(1S)} &= 0.86 \pm 0.15, \\ \Re_{p\mathrm{Pb}/pp}^{\Upsilon(3S)/\Upsilon(1S)} &= 0.81 \pm 0.15, \\ \Re_{\mathrm{Pb}/pp}^{\Upsilon(2S)/\Upsilon(1S)} &= 0.91 \pm 0.21, \\ \Re_{\mathrm{Pb}/pp}^{\Upsilon(3S)/\Upsilon(1S)} &= 0.44 \pm 0.15. \end{split}$$

- Suppression of Y(nS) production in proton-lead collisions up to about 40%, more pronounced for the excited Y states (particularly in the region of negative rapidity)
- Data support the *comover* model [0.1007/JHEP10(2018)094]

Moving to lead-lead

Exclusive photonuclear J/ψ production in ultra-peripheral PbPb collisions

Coherent production of J/ψ mesons is studied in Pb-Pb 2015 collisions at $\sqrt{S_{NN}} = 5$ TeV.

- → Two-photon and photonuclear interaction enanched in ultraperipheral collisions (UPC) (i.e. the impact parameters larger than the sum of two radii)
- \rightarrow Incoherent /coherent production: photon couples to a single/all nucleon.
- \rightarrow Background sources: incoherent J/ψ and feed-down from photonuclear $\psi(2S)$

 J/ψ are reconstructed in the dimuon final state with muons in the pseudorapidity region 2.0 < η < 4.5

Use transverse momentum fit to distinguish between the coherent and incoherent J/ψ

Pb

[LHCb-CONF-2018-003]

W, P

Exclusive photonuclear J/ψ production in UPCs: results

[LHCb-CONF-2018-003]

Preliminary results in 5 rapidity bins

J/ψ rapidity	$d\sigma/dy~({ m mb})$
2.00-2.50	$3.0 \pm 0.4 \pm 0.3$
2.50 - 3.00	$2.60 \pm 0.19 \pm 0.25$
3.00 - 3.50	$2.28 \pm 0.15 \pm 0.21$
3.50 - 4.00	$1.73 \pm 0.15 \pm 0.17$
4.00 - 4.50	$1.10 \pm 0.22 \pm 0.13$

Hole radius 47mm Station B2 z = -114.0m Station B1 z = -19.7m Station B0 z = -7.5mVariation of colour-dipole model Candidates / 0.6 220 E LHCb Preliminary 200 Pb-Pb $\sqrt{s_{NN}} = 5 \text{ TeV}$ 180 E 160 E 140 120

Ongoing studies using the HeRSChel forward shower counters to reduce the background

-5

Background sources

Fixed-target mode: The SMOG system

SMOG (The System for Measuring Overlap with Gas) enables injection of gas (He, Ne, Ar...) in the beam pipe section crossing the VELO (unique at LHC).

Fixed-target mode

- Gas pressure : 10^{-7} to 10^{-6} mbar.
- Collisions at $\sqrt{s_{NN}} = \sqrt{2E_{beam}m_p} = 41 110 \text{ GeV}$ for $E_{beam} = 0.9 6.5 \text{ TeV}$ \rightarrow relative unexplored energy scale between SPS and LHC experiments.
- At $\sqrt{s_{NN}} = 110 \text{ GeV}$, c.m. rapidity is $-2.8 < y^* < 0.2$ backward detector with access to large x value in target nucleon, for different nuclear targets.

First measurement of charm production in fixed-target at LHC

Measurement of J/ψ and D^0 production cross section in *pHe* collisions in the rapidity range [2,4.6] at $\sqrt{s_{NN}} = 86.6 \ GeV$ and 110.4 GeV

• Scaling the D^0 cross-section with the global fragmentation ratio $f(c \rightarrow D^0) = 0.542 \pm 0.024$ the $c\bar{c}$ production cross section can be obtained:

 $\sigma_{c\bar{c}} = 288 \pm 24.2 \pm 6.9 \,\mu b/nucleon$

• LHCb results in good agreement with NLO NRQCD fit (J/ ψ) and NLO pQCD prediction ($c\bar{c}$) and other experimental measurements at various energies

[Phys. Rev. Lett. 122, 132002 (2019) LHCb-PAPER-2018-023]

First measurement of charm production in fixed-target at LHC

[Phys. Rev. Lett. 122, 132002 (2019), LHCb-PAPER-2018-023]

- No strong intrinsic charm contribution is observed
- HELAC-ONIA under-estimate the cross section by a factor 1.78 (J/ ψ) and 1.44 (D^0)

 $y_{lab}=3.5$

 $y_{lab}=2.5$

 $y_{lab}=5$

Anti-proton production in *p*He $\sqrt{s_{NN}} = 110$ GeV

The cross-section for prompt antiproton production pHe at 6.5 TeV is measured .

Antiproton/proton ratio known with great precision in cosmic rays

- AMS02 (PRL 117, 091103 (2016))
- PAMELA (JETP Letters 96 (2013) 621)

The interstellar medium is mainly composed by helium and hydrogen, SMOG allows to reproduce this system.

Flux prediction uncertainties in 10-100 GeV kinetic energy range: dominated by production cross-sections uncertainties

 \rightarrow *p*He scattering cross-section results can serve as external input

[Phys. Rev. Lett. 121, 222001 (2018), LHCb-PAPER-2018-031]

Anti-proton production in *p*He $\sqrt{s_{NN}} = 110$ GeV

- Compared with simulation from: <u>EPOS LHC, EPOS 1.99, QGSJET-II, QGSJETII-04m, Hijing,</u> <u>PYTHIA 6.4. ICRC '17: difference summary by T. Pierog</u>
- Uncertainties smaller than model spread
- EPOS LHC tuned on LHC collider data underestimates \bar{p} -production

- Data collected in 2016 in *p*He collisions at $\sqrt{s_{NN}} = 110$ GeV.
- 33.7×10^6 reconstructed p-He collisions, \rightarrow yielding 1.5×10^6 antiprotons
- Access to range 12 GeV/c GeV/c $<math>p_T > 0.4$ GeV/c , PID with 2 RICH detectors . Luminosity from pe (elastic scattering) since the gas pressure

is not precisely known, measured value: $484 \pm 7 \pm 29 \ \mu b^{-1}$

Conclusions

LHCb developed a rich heavy-ion program, with very specific capabilities and unique acceptance at a hadron collider.

- Fully performant in *p*Pb
- Peripheral studies in Pb-Pb
- Fixed-target program unique at the LHC

Recent results shown today

- > Λ_c production in *p*Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
- > B^+ , B^0 and Λ_b^0 production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- > $\Upsilon(nS)$ production in *p*Pb collisions at $\sqrt{s} = 8.16$ TeV
- Exclusive photonuclear J/ψ production in ultraperipheral PbPb collisions
- > J/ψ and D^0 production cross section in pHe collisions
- > Anti-proton production in *p*He

- Chance to measure soft QCD.
- Probe the partonic content of nucleons and nuclei.
- Possibility to investigate in detail nPDFs.

Future prospects

More results to come e.g. Drell-Yan, vector bosons, more quarkonia states, dihadron correlations, Bose-Einstein condensates, flow studies. Lot of interesting measurements on-going :

- *p*Pb: Drell-Yan, correlation, exotics, Ξ_C , open charm, W/Z
- PbPb 2018 data : UPC collisions and D^0 , J/ψ productions.
- Fixed-target: photoproduction in *p*A, antihyperon in *p*He, Λ_c polarization in *p*Ne, quarkonia and D0 in *p*Ne and PbNe.
- Upgrade of the SMOG system: SMOG2 100 times more luminosity

Planned a factor >10 more integrated luminosity in Run 3!

Thank you